Solutions
Chapter 7

Problem 3

Part a

We start with equation 21b of the textbook:
(P/Ka)sin(Ka) + cos(Ka) = cos(ka). (1)

For k =0,
(P/Ka)sin(Ka) + cos(Ka) = 1. (2)

Then, as P — 0, Ka — 0. Hence, for P < 1, Ka < 1. So, in this approximation, keeping up to
square terms in Ka in the series expansion of sine and cosine, we get,
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Equation 13 of the textbook gives
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So, for the K2 found above, we get the energy to be,
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Part b

Using equation 1 above, the lower edge of the band gap can be seen to be at ka = Ka = 7. Hence,
the energy of the lower edge is given by equation 5 to be
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For P <« 1, the Ka for the upper edge is expected to be larger than 7 by only a small amount.
Hence, we choose
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Then equation 1 gives
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This leads to
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Then expanding the sine and cosine in powers of a and keeping up to square terms gives
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As a # 0, we get
a(m + a) = 2P.

As a < 1, the relevant root of this equation is
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Expanding the quantity in parentheses in powers of P and keeping up to the linear term gives

a=2P/r.
So, for the upper edge of the band gap,
Ka=m+2P/r.
Using this in equation 5 gives the energy of the upper edge to be
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Once again for P < 1, this approximates to
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Hence, energy gap is
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