Solutions

Chapter 3

Problem 2

Part a

$$\int_0^1 |f(x)|^2 dx = \int_0^1 x^{2\nu} dx = \left. \frac{x^{2\nu+1}}{2\nu+1} \right|_0^1 = \frac{1}{2\nu+1} (1 - 0^{2\nu+1}).$$

This is finite for $(2\nu+1)>0$, that is $\nu>-1/2$. For $\nu<-1/2$, the integral blows up. For $\nu=-1/2$,

$$\int_0^1 |f(x)|^2 dx = \int_0^1 \frac{1}{x} dx = \ln x \Big|_0^1 = \infty.$$

Hence, the given function is in Hilbert space if $\nu > -1/2$.

Part b

From the above result, f(x) is in Hilbert space for $\nu = 1/2$. The function $xf(x) = x^{3/2}$, is also in Hilbert space as seen from above. However, $df(x)/dx = x^{-1/2}/2$ is not in Hilbert space as seen above.

Problem 4

Part a

Let \hat{Q} and \hat{R} be two hermitian operators and their sum be

$$\hat{S} = \hat{Q} + \hat{R}.$$

Then, for all f(x)

$$\langle f|\hat{S}f\rangle = \int f^*\hat{S}f \, dx = \int f^*(\hat{Q} + \hat{R})f \, dx = \int f^*\hat{Q}f \, dx + \int f^*\hat{R}f \, dx$$
$$= \int (\hat{Q}f)^*f \, dx + \int (\hat{R}f)^*f \, dx, \quad \text{(using the hermiticities of } \hat{Q} \text{ and } \hat{R})$$
$$= \int ((\hat{Q} + \hat{R})f)^*f \, dx = \int (\hat{S}f)^*f \, dx = \langle \hat{S}f|f\rangle.$$

Hence, \hat{S} is hermitian.

Part b

Let,

$$\hat{R} = \alpha \hat{Q}.$$

Then,

$$\begin{split} \langle f|\hat{R}f\rangle &= \int f^*\hat{R}f\,dx = \int f^*\alpha\hat{Q}f\,dx = \alpha\int f^*\hat{Q}f\,dx \\ &= \alpha\int (\hat{Q}f)^*f\,dx, \quad \text{(using the hermiticity of }\hat{Q}) \\ &= \int (\alpha^*\hat{Q}f)^*f\,dx = \int (\alpha\hat{Q}f)^*f\,dx, \quad \text{(if }\alpha\text{ is real)}. \\ &= \int (\hat{R}f)^*f\,dx = \langle \hat{R}f|f\rangle. \end{split}$$

Hence \hat{R} is hermitian if α is real.

Part c

Let \hat{Q} and \hat{R} be two hermitian operators and let

$$\hat{S} = \hat{Q}\hat{R}.$$

Then,

$$\langle f|\hat{S}f\rangle = \langle f|\hat{Q}\hat{R}f\rangle = \int f^*\hat{Q}\hat{R}f\,dx$$

$$= \int (\hat{Q}f)^*\hat{R}f\,dx = \int (\hat{R}\hat{Q}f)^*f\,dx, \quad \text{(using the hermiticities of }\hat{Q} \text{ and then }\hat{R})$$

$$= \int (\hat{Q}\hat{R}f)^*f\,dx, \quad \text{(if }\hat{Q}\hat{R} = \hat{R}\hat{Q}).$$

$$= \int (\hat{S}f)^*f\,dx = \langle \hat{S}f|f\rangle.$$

Hence \hat{S} is hermitian if $\hat{Q}\hat{R} = \hat{R}\hat{Q}$.

Part d

$$\langle f|\hat{x}f\rangle = \int f^*xf\,dx = \int (xf)^*f\,dx,$$
 (as x is real)
= $\langle \hat{x}f|f\rangle$.

Hence, \hat{x} is hermitian. Similarly, it can be shown that any function of \hat{x} is also hermitian and hence, V(x) is hermitian.

Equation 3.19 of the textbook shows that \hat{p} is hermitian. Hence, from the result of part c above, \hat{p}^2 must also be hermitian. As (1/2m) is real, part b above says that $\hat{p}^2/2m$ is hermitian. But, this is the same as $((-\hbar^2/2m)d^2/dx^2)$. As V(x) is also hermitian, the sum

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x),$$

must also be hermitian as derived in part a.

Problem 5

Part a

As x is real,

$$\langle f|\hat{x}g\rangle = \int f^*xg\,dx = \int (xf)^*g\,dx = \langle \hat{x}f|g\rangle.$$

Hence,

$$\hat{x}^{\dagger} = \hat{x}.$$

$$\langle f|ig\rangle = \int f^*ig \, dx = \int (-if)^*g \, dx = \langle (-if)|g\rangle.$$

Hence,

$$i^{\dagger} = -i.$$

$$\langle f | \frac{d}{dx} g \rangle = \int_{-\infty}^{\infty} f^* \frac{dg}{dx} dx = f^* g \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \frac{df^*}{dx} g dx = 0 - \int_{-\infty}^{\infty} \frac{df^*}{dx} g dx$$

$$= \int_{-\infty}^{\infty} \left(-\frac{d}{dx} f \right)^* g dx = \left\langle \left(-\frac{d}{dx} f \right) \middle| g \right\rangle.$$

Hence,

$$\left(\frac{d}{dx}\right)^{\dagger} = -\frac{d}{dx}$$

Part b

$$\langle (\hat{Q}\hat{R})^\dagger f | g \rangle = \langle f | (\hat{Q}\hat{R})g \rangle = \langle f | \hat{Q}(\hat{R}g) \rangle = \langle \hat{Q}^\dagger f | \hat{R}g \rangle = \langle \hat{R}^\dagger \hat{Q}^\dagger f | g \rangle.$$

Hence,

$$(\hat{Q}\hat{R})^{\dagger} = \hat{R}^{\dagger}\hat{Q}^{\dagger}.$$

$$\langle (\hat{Q} + \hat{R})^{\dagger} f | g \rangle = \langle f | (\hat{Q} + \hat{R}) g \rangle = \langle f | \hat{Q} g \rangle + \langle f | \hat{R} g \rangle = \langle \hat{Q}^{\dagger} f | g \rangle + \langle \hat{R}^{\dagger} f | g \rangle = \langle (\hat{Q}^{\dagger} + \hat{R}^{\dagger}) f | g \rangle.$$

Hence,

$$(\hat{Q} + \hat{R})^{\dagger} = \hat{Q}^{\dagger} + \hat{R}^{\dagger}.$$

$$\langle (c\hat{Q})^\dagger f | g \rangle = \langle f | (c\hat{Q})g \rangle = \int f^*(c\hat{Q})g \, dx = c \int f^*\hat{Q}g \, dx = c \int (\hat{Q}^\dagger f)^*g \, dx = \int (c^*\hat{Q}^\dagger f)^*g \, dx = \langle c^*\hat{Q}^\dagger f | g \rangle$$
 Hence,

$$(c\hat{Q})^{\dagger} = c^*\hat{Q}^{\dagger}.$$

problem 7

Part a

$$\hat{Q}f = qf$$
, and $\hat{Q}g = qg$.

So for the linear combination

$$h = \alpha f + \beta g,$$

$$\hat{Q}h = \hat{Q}(\alpha f + \beta g) = \alpha \hat{Q}f + \beta \hat{Q}g = \alpha qf + \beta qg = q(\alpha f + \beta g) = qh.$$

Hence, h is an eigenfunction of \hat{Q} with the eigenvalue q.

Part b

$$\frac{d^2}{dx^2}f = \frac{d^2}{dx^2}\exp(x) = \exp(x) = f.$$

Hence the eigenvalue for f is 1.

$$\frac{d^2}{dx^2}g = \frac{d^2}{dx^2} \exp(-x) = \exp(-x) = g.$$

Hence the eigenvalue for g is also 1. Let the two linear combinations be

$$h_1 = a_1 f + b_1 g$$
, and $h_2 = a_2 f + b_2 g$.

Then the orthogonality condition is

$$0 = \int_{-1}^{1} h_1^* h_2 dx = a_1^* a_2 \int_{-1}^{1} \exp(2x) dx + b_1^* b_2 \int_{-1}^{1} \exp(-2x) dx + a_1^* b_2 \int_{-1}^{1} dx + b_1^* a_2 \int_{-1}^{1} dx$$
$$= (a_1^* a_2 + b_1^* b_2) \sinh(2) + 2(a_1^* b_2 + b_1^* a_2)$$

This condition can be satisfied an infinite number of ways. One simple choice would be

$$a_1 = a_2 = b_1 = -b_2 = 1.$$

Then,

$$h_1 = f + g$$
, and $h_2 = f - g$.

Problem 10

The ground state of the infinite square well is

$$\psi_1 = \sqrt{\frac{2}{a}} \sin(\pi x/a).$$

Operating it with the momentum operator gives

$$\hat{p}\psi_1 = -i\hbar \frac{d\psi_1}{dx} = -i\hbar \sqrt{\frac{2}{a}} \frac{\pi}{a} \cos(\pi x/a).$$

As the above result cannot be written in the form $p\psi_1, \psi_1$ is not an eigenfunction of momentum.

Problem 13

$$\begin{split} &\Phi(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{-ipx/\hbar} \Psi(x,t) \, dx \\ &\Phi^*(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{ipx'/\hbar} \Psi^*(x',t) \, dx' \\ &i\hbar \frac{\partial \Phi}{\partial p} = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} x e^{-ipx/\hbar} \Psi(x,t) \, dx \end{split}$$

Hence,

$$\begin{split} \int_{-\infty}^{\infty} \Phi^* \left(i\hbar \frac{\partial}{\partial p} \right) \Phi \, dp &= \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{ipx'/\hbar} \Psi^*(x',t) x e^{-ipx/\hbar} \Psi(x,t) \, dx' \, dx \, dp \\ &= \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Psi^*(x',t) x \Psi(x,t) \, dx' \, dx \int_{-\infty}^{\infty} e^{ipx'/\hbar} e^{-ipx/\hbar} \, dp \\ &= \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Psi^*(x',t) x \Psi(x,t) \, dx' \, dx \int_{-\infty}^{\infty} e^{ip(x'-x)/\hbar} \, dp \\ &= \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Psi^*(x',t) x \Psi(x,t) \, dx' \, dx (2\pi\hbar\delta(x'-x)) \\ &= \int_{-\infty}^{\infty} \Psi^*(x,t) x \Psi(x,t) \, dx = \langle x \rangle. \end{split}$$

Problem 14

Part a

$$\begin{split} \left[\hat{A}+\hat{B},\hat{C}\right] &= (\hat{A}+\hat{B})\hat{C} - \hat{C}(\hat{A}+\hat{B}) = \hat{A}\hat{C} + \hat{B}\hat{C} - \hat{C}\hat{A} - \hat{C}\hat{B} \\ &= (\hat{A}\hat{C}-\hat{C}\hat{A}) + (\hat{B}\hat{C}-\hat{C}\hat{B}) = \left[\hat{A},\hat{C}\right] + \left[\hat{B},\hat{C}\right] \\ \left[\hat{A}\hat{B},\hat{C}\right] &= \hat{A}\hat{B}\hat{C} - \hat{C}\hat{A}\hat{B} = \hat{A}\hat{B}\hat{C} - \hat{A}\hat{C}\hat{B} + \hat{A}\hat{C}\hat{B} - \hat{C}\hat{A}\hat{B} \\ &= \hat{A}(\hat{B}\hat{C}-\hat{C}\hat{B}) + (\hat{A}\hat{C}-\hat{C}\hat{A})\hat{B} = \hat{A}\left[\hat{B},\hat{C}\right] + \left[\hat{A},\hat{C}\right]\hat{B}. \end{split}$$

Part b

Using an arbitrary test function f,

$$[x^n, \hat{p}]f = x^n \hat{p}f - \hat{p}(x^n f) = -i\hbar \left(x^n \frac{df}{dx} - \frac{d}{dx}(x^n f) \right) = -i\hbar \left(x^n \frac{df}{dx} - x^n \frac{df}{dx} - nx^{n-1} f \right) = i\hbar nx^{n-1} f.$$
Hence,
$$[x^n, \hat{p}] = i\hbar nx^{n-1}.$$

Part c

Let

$$f(x) = \sum_{j=0}^{\infty} a_j x^j.$$

Then, using the results of part a,

$$[f(x), \hat{p}] = \left[\sum_{j=0}^{\infty} a_j x^j, \hat{p}\right] = \sum_{j=0}^{\infty} a_j [x^j, \hat{p}]$$

Then using the result of part b,

$$[f(x),\hat{p}] = i\hbar \sum_{j=0}^{\infty} a_j j x^{j-1} = i\hbar \sum_{j=0}^{\infty} a_j \frac{d}{dx} x^j = i\hbar \frac{d}{dx} \sum_{j=0}^{\infty} a_j x^j = i\hbar \frac{df}{dx}.$$