Solutions

Chapter 2

Problem 1

Part a

$$
\Psi(x, t)=\psi(x) e^{-i E t / \hbar}=\psi(x) e^{-i\left(E_{0}+i \Gamma\right) t / \hbar}=\psi(x) e^{-i E_{0} t / \hbar} e^{\Gamma t / \hbar} .
$$

Hence,

$$
\Psi^{*}(x, t)=\psi^{*}(x) e^{i E_{0} t / \hbar} e^{\Gamma t / \hbar}
$$

So,

$$
\int_{-\infty}^{\infty} \Psi^{*} \Psi d x=\int_{-\infty}^{\infty} \psi^{*}(x) e^{i E_{0} t / \hbar} e^{\Gamma t / \hbar} \psi(x) e^{-i E_{0} t / \hbar} e^{\Gamma t / \hbar} d x=e^{2 \Gamma t / \hbar} \int_{-\infty}^{\infty} \psi^{*}(x) \psi(x) d x
$$

As total probability should not change with time, the only way this can be physical is to have $\Gamma=0$.

Part b

Let ψ be a solution of the time-independent Schrödinger equation with energy E. Then,

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V \psi=E \psi
$$

As both V and E are real, the complex conjugate of this equation is

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi^{*}}{d x^{2}}+V \psi^{*}=E \psi^{*}
$$

Hence, ψ^{*} is also a solution of the same Schrödinger equation with the same energy E. As the equation is linear in the wavefunction, the following two linear combinations are also solutions.

$$
\psi_{r}=\psi+\psi^{*} \quad \text { and } \quad \psi_{i}=i\left(\psi-\psi^{*}\right) .
$$

That is,

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{r}}{d x^{2}}+V \psi_{r}=E \psi_{r},
$$

and

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{i}}{d x^{2}}+V \psi_{i}=E \psi_{i}
$$

If ψ is not real, then ψ^{*} is another distinct solution with the same energy. But then they can both be replaced by the two real solutions ψ_{r} and ψ_{i}. That these are real is easily verified as follows.

$$
\psi_{r}^{*}=\left(\psi+\psi^{*}\right)^{*}=\psi^{*}+\psi=\psi_{r},
$$

and,

$$
\psi_{i}^{*}=\left(i\left(\psi-\psi^{*}\right)\right)^{*}=-i \psi^{*}+i \psi=\psi_{i} .
$$

Part c

Replacing x by $-x$ in the time-independent Schrödinger equation gives,

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(-x)}{d x^{2}}+V(-x) \psi(-x)=E \psi(-x) .
$$

If $V(x)$ is even, then $V(-x)=V(x)$. Hence,

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(-x)}{d x^{2}}+V(x) \psi(-x)=E \psi(-x) .
$$

So, $\psi(x)$ and $\psi(-x)$ are both solutions of the same equations. Hence, from the linearity of the equation, we conclude that the following are both solutions as well.

$$
\psi_{e}(x)=\psi(x)+\psi(-x) \quad \text { and } \quad \psi_{o}(x)=\psi(x)-\psi(-x) .
$$

Then the pair of solutions $\psi(x)$ and $\psi(-x)$ can be replaced by the pair $\psi_{e}(x)$ and $\psi_{o}(x) . \psi_{e}(x)$ is even as

$$
\psi_{e}(-x)=\psi(-x)+\psi(-(-x))=\psi_{e}(x) .
$$

$\psi_{o}(x)$ is odd as

$$
\psi_{o}(-x)=\psi(-x)-\psi(-(-x))=-\psi_{o}(x) .
$$

Problem 2

The Schrödinger equation can be written in the following form.

$$
\frac{d^{2} \psi}{d x^{2}}=\frac{2 m}{\hbar^{2}}[V(x)-E] \psi
$$

If $E<V_{\text {min }}$, then $[V(x)-E]$ is positive for all x. Hence, ψ and its second derivative have the same sign for all x. Now consider the following cases of x dependence of ψ starting at any arbitrary x say $x=x_{0}$ and moving in the positive x direction.

1. ψ is positive and $d \psi / d x$ is positive. Then $d^{2} \psi / d x^{2}$ is also positive from above observation. This will make ψ increase in the positive x direction until it becomes infinity at $x=\infty$.
2. ψ is positive and $d \psi / d x$ is negative. Then $d^{2} \psi / d x^{2}$ is also positive from above observation. This will make ψ decrease and $d \psi / d x$ increase in the positive x direction as long as ψ and hence, $d^{2} \psi / d x^{2}$ remain positive. This will continue until $d \psi / d x$ becomes zero at a minimum point and proceeds to increase in the positive x direction. Then ψ will also increase beyond the minimum point until it becomes infinity at $x=\infty$. However, if $d \psi / d x$ fails to become zero before ψ becomes zero, then ψ and hence, $d^{2} \psi / d x^{2}$ will become negative and item 3 will become applicable.
3. ψ is negative and $d \psi / d x$ is negative. Then $d^{2} \psi / d x^{2}$ is also negative from above observation. This will make ψ decrease in the positive x direction until it becomes negative infinity at $x=-\infty$.
4. ψ is negative and $d \psi / d x$ is positive. Then $d^{2} \psi / d x^{2}$ is also negative from above observation. This will make ψ increase and $d \psi / d x$ decrease in the positive x direction as long as ψ and hence, $d^{2} \psi / d x^{2}$ remain negative. This will continue until $d \psi / d x$ becomes zero at a maximum point and proceeds to decrease in the positive x direction. Then ψ will also decrease beyond the maximum point until it becomes negative infinity at $x=-\infty$. However, if $d \psi / d x$ fails to become zero before ψ becomes zero, then ψ and hence, $d^{2} \psi / d x^{2}$ will become positive and item 1 will become applicable.

The above items cover all cases and they all lead to ψ becoming infinite (positive or negative) at $x=\infty$. Hence, normalization will not be possible.

Problem 4

$$
\begin{gathered}
\langle x\rangle=\frac{2}{a} \int_{0}^{a} x \sin ^{2}(n \pi x / a) d x=\frac{1}{a} \int_{0}^{a} x(1-\cos (2 n \pi x / a)) d x=\frac{a}{2} . \\
\left\langle x^{2}\right\rangle=\frac{2}{a} \int_{0}^{a} x^{2} \sin ^{2}(n \pi x / a) d x=\frac{1}{a} \int_{0}^{a} x^{2}(1-\cos (2 n \pi x / a)) d x=a^{2}\left(\frac{1}{3}-\frac{1}{2 n^{2} \pi^{2}}\right) . \\
\langle p\rangle=\frac{2}{a}(-i \hbar) \int_{0}^{a} \sin (n \pi x / a) \frac{d}{d x} \sin (n \pi x / a) d x=\frac{-2 i \hbar n \pi}{a^{2}} \int_{0}^{a} \sin (n \pi x / a) \cos (n \pi x / a) d x=0 . \\
\left\langle p^{2}\right\rangle=\frac{2}{a}(-i \hbar)^{2} \int_{0}^{a} \sin (n \pi x / a) \frac{d^{2}}{d x^{2}} \sin (n \pi x / a) d x=\frac{2 n^{2} \pi^{2} \hbar^{2}}{a^{3}} \int_{0}^{a} \sin ^{2}(n \pi x / a) d x=\frac{n^{2} \pi^{2} \hbar^{2}}{a^{2}} . \\
\sigma_{x}^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}=a^{2}\left(\frac{1}{3}-\frac{1}{2 n^{2} \pi^{2}}\right)-\frac{a^{2}}{4}=a^{2}\left(\frac{1}{3}-\frac{1}{2 n^{2} \pi^{2}}-\frac{1}{4}\right)=\frac{a^{2}}{4}\left(\frac{1}{3}-\frac{2}{n^{2} \pi^{2}}\right) \\
\sigma_{x}=\frac{a}{2} \sqrt{\left(\frac{1}{3}-\frac{2}{n^{2} \pi^{2}}\right)} \\
\sigma_{p}^{2}=\left\langle p^{2}\right\rangle-\langle p\rangle^{2}=\frac{n^{2} \pi^{2} \hbar^{2}}{a^{2}} \\
\sigma_{p}=\frac{n \pi \hbar}{a} \\
\sigma_{x} \sigma_{p}=\frac{n \pi \hbar}{2} \sqrt{\left(\frac{1}{3}-\frac{2}{n^{2} \pi^{2}}\right)}=\frac{\hbar}{2} \sqrt{\left(\frac{n^{2} \pi^{2}}{3}-2\right)}
\end{gathered}
$$

This is the smallest for $n=1$ and it is

$$
\sigma_{x} \sigma_{p}=\frac{\hbar}{2} \sqrt{\left(\frac{\pi^{2}}{3}-2\right)}>\frac{\hbar}{2}
$$

Problem 15

The recursion formula is,

$$
a_{j+2}=\frac{-2(n-j)}{(j+1)(j+2)} a_{j} .
$$

For $H_{5}(\xi)$,

$$
a_{3}=\frac{-2(5-1)}{2 \times 3} a_{1}=-4 a_{1} / 3, \quad a_{5}=\frac{-2(5-3)}{4 \times 5} a_{3}=4 a_{1} / 15 .
$$

Hence,

$$
H_{5}(\xi)=a_{1}\left(\xi-4 \xi^{3} / 3+4 \xi^{5} / 15\right)
$$

To keep with convention,

$$
4 a_{1} / 15=2^{5}, \quad \text { Hence }, \quad a_{1}=120 .
$$

Thus,

$$
H_{5}(\xi)=32 \xi^{5}-160 \xi^{3}+120 \xi .
$$

For $H_{6}(\xi)$,

$$
a_{2}=\frac{-2(6-0)}{1 \times 2} a_{0}=-6 a_{0}, \quad a_{4}=\frac{-2(6-2)}{3 \times 4} a_{2}=4 a_{0}, \quad a_{6}=\frac{-2(6-4)}{5 \times 6} a_{4}=-8 a_{0} / 15 .
$$

Hence,

$$
H_{6}(\xi)=a_{0}\left(1-6 \xi^{2}+4 \xi^{4}-8 \xi^{6} / 15\right) .
$$

To keep with convention,

$$
-8 a_{0} / 15=2^{6}, \quad \text { Hence, } \quad a_{0}=-120 .
$$

Thus,

$$
H_{6}(\xi)=64 \xi^{6}-480 \xi^{4}+720 \xi^{2}-120 .
$$

Problem 20

Part a

$$
1=\int \Psi^{*} \Psi d x=A^{2} \int_{-\infty}^{\infty} e^{-2 a|x|} d x=2 A^{2} \int_{0}^{\infty} e^{-2 a x} d x=A^{2} / a .
$$

Hence,

$$
A=\sqrt{a} .
$$

Part b

$$
\begin{gathered}
\phi(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \Psi(x, 0) e^{-i k x} d x=\sqrt{\frac{a}{2 \pi}} \int_{-\infty}^{\infty} e^{-a|x|} e^{-i k x} d x \\
=\sqrt{\frac{a}{2 \pi}}\left[\int_{-\infty}^{0} e^{a x} e^{-i k x} d x+\int_{0}^{\infty} e^{-a x} e^{-i k x} d x\right]=\sqrt{\frac{a}{2 \pi}}\left[\frac{1}{a-i k}+\frac{1}{a+i k}\right]=\sqrt{\frac{2 a^{3}}{\pi}} \frac{1}{a^{2}+k^{2}}
\end{gathered}
$$

Part c

$$
\Psi(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \phi(k) e^{i\left(k x-\hbar k^{2} t / 2 m\right)} d k=\frac{a^{3 / 2}}{\pi} \int_{-\infty}^{\infty} \frac{e^{i\left(k x-\hbar k^{2} t / 2 m\right)}}{a^{2}+k^{2}} d k
$$

Problem 21

Part a

$$
1=\int \Psi^{*} \Psi d x=A^{2} \int_{-\infty}^{\infty} e^{-2 a x^{2}} d x=A^{2} \sqrt{\frac{\pi}{2 a}}
$$

Hence,

$$
A=\left(\frac{2 a}{\pi}\right)^{1 / 4}
$$

Part b

$$
\begin{gathered}
\phi(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \Psi(x, 0) e^{-i k x} d x=\frac{A}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-a x^{2}} e^{-i k x} d x=\frac{A}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-a\left(x^{2}+i k x / a\right)} d x \\
=\frac{A}{\sqrt{2 \pi}} e^{-k^{2} /(4 a)} \int_{-\infty}^{\infty} e^{-a\left(x^{2}+i k x / a-k^{2} /\left(4 a^{2}\right)\right)} d x=\frac{A}{\sqrt{2 \pi}} e^{-k^{2} /(4 a)} \int_{-\infty}^{\infty} e^{-a(x+i k /(2 a))^{2}} d x \\
=\frac{A}{\sqrt{2 \pi}} e^{-k^{2} /(4 a)} \sqrt{\frac{\pi}{a}}=\frac{A}{\sqrt{2 a}} e^{-k^{2} /(4 a)}=\frac{1}{(2 \pi a)^{1 / 4}} e^{-k^{2} /(4 a)} \\
\Psi(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \phi(k) e^{i\left(k x-\hbar k^{2} t / 2 m\right)} d k=\frac{1}{\left(8 \pi^{3} a\right)^{1 / 4}} \int_{-\infty}^{\infty} e^{-k^{2} /(4 a)} e^{i\left(k x-\hbar k^{2} t / 2 m\right)} d k \\
=\frac{1}{\left(8 \pi^{3} a\right)^{1 / 4}} \int_{-\infty}^{\infty} e^{-\alpha k^{2}} e^{i k x} d k
\end{gathered}
$$

where,

$$
\alpha=\frac{1}{4 a}+\frac{i \hbar t}{2 m}
$$

With that,

$$
\begin{gathered}
\Psi(x, t)=\frac{1}{\left(8 \pi^{3} a\right)^{1 / 4}} \int_{-\infty}^{\infty} e^{-\alpha\left(k^{2}-i k x / \alpha\right)} d k=\frac{e^{-x^{2} / 4 \alpha}}{\left(8 \pi^{3} a\right)^{1 / 4}} \int_{-\infty}^{\infty} e^{-\alpha\left(k^{2}-i k x / \alpha-x^{2} / 4 \alpha^{2}\right)} d k \\
=\frac{e^{-x^{2} / 4 \alpha}}{\left(8 \pi^{3} a\right)^{1 / 4}} \int_{-\infty}^{\infty} e^{-\alpha(k-i x / 2 \alpha)^{2}} d k=\frac{e^{-x^{2} / 4 \alpha}}{\left(8 \pi^{3} a\right)^{1 / 4}} \sqrt{\frac{\pi}{\alpha}} .
\end{gathered}
$$

Note that,

$$
4 \alpha=\frac{1}{a}+\frac{2 i \hbar t}{m}=\frac{1}{a}\left(1+\frac{2 i a \hbar t}{m}\right)=\frac{\gamma^{2}}{a}
$$

as γ is defined to be,

$$
\gamma=\sqrt{\left(1+\frac{2 i a \hbar t}{m}\right)}
$$

Then,

$$
\Psi(x, t)=\left(\frac{2 a}{\pi}\right)^{1 / 4} \frac{1}{\gamma} e^{-a x^{2} / \gamma^{2}}
$$

Part c

$$
\begin{gathered}
\Psi^{*}=\left(\frac{2 a}{\pi}\right)^{1 / 4} \frac{1}{\gamma^{*}} e^{-a x^{2} / \gamma^{* 2}} \\
|\Psi(x, t)|^{2}=\Psi^{*} \Psi=\left(\frac{2 a}{\pi}\right)^{1 / 2} \frac{1}{\gamma^{*} \gamma} e^{-a x^{2}\left(1 / \gamma^{* 2}+1 / \gamma^{2}\right)} \\
\gamma^{*}=\sqrt{\left(1-\frac{2 i a \hbar t}{m}\right)}, \quad \gamma^{* 2}=\left(1-\frac{2 i a \hbar t}{m}\right) \\
\gamma^{*} \gamma=\sqrt{\left(1+\frac{4 a^{2} \hbar^{2} t^{2}}{m^{2}}\right)}=\frac{\sqrt{a}}{w} \quad \text { as } w=\sqrt{a /\left(1+4 a^{2} \hbar^{2} t^{2} / m^{2}\right)} \\
1 / \gamma^{* 2}+1 / \gamma^{2}=\frac{\gamma^{2}+\gamma^{* 2}}{\gamma^{2} \gamma^{* 2}}=\frac{2}{\left(1+\frac{4 a^{2} \hbar^{2} t^{2}}{m^{2}}\right)}=\frac{2 w^{2}}{a}
\end{gathered}
$$

Hence,

$$
|\Psi(x, t)|^{2}=\sqrt{\frac{2}{\pi}} w e^{-2 w^{2} x^{2}}
$$

Part d

$$
\begin{gathered}
\langle x\rangle=\int_{-\infty}^{\infty} x|\Psi(x, t)|^{2} d x=\sqrt{\frac{2}{\pi}} w \int_{-\infty}^{\infty} x e^{-2 w^{2} x^{2}} d x=0 \\
\langle p\rangle=-i \hbar \int_{-\infty}^{\infty} \Psi^{*} \frac{\partial \Psi}{\partial x} d x=i \hbar\left(2 a / \gamma^{2}\right) \int_{-\infty}^{\infty} x|\Psi|^{2} d x=0 \\
\left\langle x^{2}\right\rangle=\int_{-\infty}^{\infty} x^{2}|\Psi(x, t)|^{2} d x=\sqrt{\frac{2}{\pi}} w \int_{-\infty}^{\infty} x^{2} e^{-2 w^{2} x^{2}} d x=\frac{1}{4 w^{2}} \\
\left\langle p^{2}\right\rangle=-\hbar^{2} \int_{-\infty}^{\infty} \Psi^{*} \frac{\partial^{2} \Psi}{\partial x^{2}} d x
\end{gathered}
$$

$$
\begin{aligned}
\frac{\partial^{2} \Psi}{\partial x^{2}} & =-\frac{\partial}{\partial x}\left(\left(\frac{2 a}{\pi}\right)^{1 / 4} \frac{2 a x}{\gamma^{3}} e^{-a x^{2} / \gamma^{2}}\right)=-\left(\frac{2 a}{\pi}\right)^{1 / 4} \frac{2 a}{\gamma^{3}} \frac{\partial}{\partial x}\left(x e^{-a x^{2} / \gamma^{2}}\right) \\
& =-\left(\frac{2 a}{\pi}\right)^{1 / 4} \frac{2 a}{\gamma^{3}}\left(1-2 a x^{2} / \gamma^{2}\right) e^{-a x^{2} / \gamma^{2}}=-\frac{2 a}{\gamma^{2}}\left(1-2 a x^{2} / \gamma^{2}\right) \Psi
\end{aligned}
$$

Hence,

$$
\begin{gathered}
\left\langle p^{2}\right\rangle=\hbar^{2} \frac{2 a}{\gamma^{2}} \int_{-\infty}^{\infty}\left(1-2 a x^{2} / \gamma^{2}\right)|\Psi|^{2} d x=\hbar^{2} \frac{2 a}{\gamma^{2}}\left(1-\left(2 a / \gamma^{2}\right) \int_{-\infty}^{\infty} x^{2}|\Psi|^{2} d x\right) \\
=\hbar^{2} \frac{2 a}{\gamma^{2}}\left(1-\left(2 a / \gamma^{2}\right) \frac{1}{4 w^{2}}\right)=\hbar^{2} \frac{2 a}{\gamma^{2}}\left(1-\frac{a}{2 \gamma^{2} w^{2}}\right)=\hbar^{2} \frac{2 a}{\gamma^{2}}\left(1-\frac{a\left(1+(2 a \hbar t / m)^{2}\right)}{2(1+2 i a \hbar t / m) a}\right) \\
=\hbar^{2} \frac{2 a}{\gamma^{2}}\left(\frac{2(1+2 i a \hbar t / m)-\left(1+(2 a \hbar t / m)^{2}\right)}{2(1+2 i a \hbar t / m)}\right)=\hbar^{2} \frac{2 a}{\gamma^{2}}\left(\frac{\left.1+4 i a \hbar t / m-(2 a \hbar t / m)^{2}\right)}{2(1+2 i a \hbar t / m)}\right) \\
=\hbar^{2} \frac{2 a}{\gamma^{2}}\left(\frac{(1+2 i a \hbar t / m)^{2}}{2(1+2 i a \hbar t / m)}\right)=\hbar^{2} \frac{2 a}{\gamma^{2}}\left(\frac{\gamma^{4}}{2 \gamma^{2}}\right)=a \hbar^{2} . \\
\sigma_{x}=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}=\frac{1}{2 w} \\
\sigma_{p}=\sqrt{\left\langle p^{2}\right\rangle-\langle p\rangle^{2}}=\sqrt{a} \hbar .
\end{gathered}
$$

Hence,

$$
\sigma_{x} \sigma_{p}=\frac{\sqrt{a} \hbar}{2 w}=\frac{\hbar}{2} \sqrt{\left(1+4 a^{2} \hbar^{2} t^{2} / m^{2}\right)}
$$

This has the minimum value at $t=0$ and increases with t.

Problem 34

Part a

For $x \leq 0$, the Schrödinger equation is

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi
$$

The solution of this is

$$
\psi(x)=A e^{i k x}+B e^{-i k x} \quad \text { where } \quad k=\sqrt{\frac{2 m E}{\hbar^{2}}}
$$

For $x>0$, the Schrödinger equation is

$$
\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=\left(V_{0}-E\right) \psi
$$

The equation is written in this form as $E<V_{0}$. The solution of this is

$$
\psi(x)=C e^{-\kappa x}+D e^{\kappa x} \quad \text { where } \quad \kappa=\sqrt{\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}} .
$$

As the wavefunction cannot go to ∞ at $x=\infty$, we need to impose the condition $D=0$. So,

$$
\psi(x)=C e^{-\kappa x} \quad \text { for } \quad x>0 .
$$

The continuity condition on ψ at $x=0$ gives

$$
A+B=C .
$$

The continuity condition on $d \psi / d x$ at $x=0$, gives

$$
i k A-i k B=-\kappa C .
$$

Eliminating C between these equations gives

$$
i k(A-B)=-\kappa(A+B) .
$$

Hence,

$$
B=\frac{i k+\kappa}{i k-\kappa} A,
$$

and the reflection coefficient is,

$$
R=\left|\frac{B}{A}\right|^{2}=\left|\frac{i k+\kappa}{i k-\kappa}\right|^{2}=1 .
$$

Hence, everything is reflected and there is no transmission.

Part b

For $x \leq 0$, the Schrödinger equation is

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi
$$

The solution of this is

$$
\psi(x)=A e^{i k x}+B e^{-i k x} \quad \text { where } \quad k=\sqrt{\frac{2 m E}{\hbar^{2}}} .
$$

For $x>0$, the Schrödinger equation is

$$
\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=-\left(E-V_{0}\right) \psi
$$

The equation is written in this form as $E>V_{0}$. The solution of this is

$$
\psi(x)=C e^{i K x}+D e^{-i K x} \quad \text { where } \quad K=\sqrt{\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}}} .
$$

As there can be no wave traveling in the negative x direction in this region, we need to impose the condition $D=0$. So,

$$
\psi(x)=C e^{i K x} \quad \text { for } \quad x>0
$$

The continuity condition on ψ at $x=0$ gives

$$
A+B=C
$$

The continuity condition on $d \psi / d x$ at $x=0$, gives

$$
i k A-i k B=i K C
$$

Eliminating C between these equations gives

$$
i k(A-B)=i K(A+B)
$$

Hence,

$$
B=\frac{k-K}{k+K} A
$$

and the reflection coefficient is,

$$
R=\left|\frac{B}{A}\right|^{2}=\left(\frac{k-K}{k+K}\right)^{2} .
$$

which is less than 1 as long as $E>V_{0}>0$.

Part c

The definition of particle current (problem 1.14) is

$$
J(x, t)=\frac{i \hbar}{2 m}\left(\frac{\partial \Psi^{*}}{\partial x} \Psi-\Psi^{*} \frac{\partial \Psi}{\partial x}\right)=\frac{i \hbar}{2 m}\left(\frac{\partial \psi^{*}}{\partial x} \psi-\psi^{*} \frac{\partial \psi}{\partial x}\right)
$$

For $x<0$, the incident particle wavefunction is

$$
\psi_{i n}=A e^{i k x}
$$

So, the incident particle current is

$$
J_{i n}=\frac{i \hbar}{2 m}\left(-2 i k|A|^{2}\right)=\frac{\hbar k}{m}|A|^{2}
$$

For $x>0$, the transmitted particle wavefunction is

$$
\psi_{\text {out }}=C e^{i K x}
$$

So, the transmitted particle current is

$$
J_{\text {out }}=\frac{i \hbar}{2 m}\left(-2 i K|C|^{2}\right)=\frac{\hbar K}{m}|C|^{2}
$$

Hence, the transmission coefficient is

$$
T=\frac{J_{\text {out }}}{J_{\text {in }}}=\frac{K}{k} \frac{|C|^{2}}{|A|^{2}}=\sqrt{\frac{E-V_{0}}{E}} \frac{|C|^{2}}{|A|^{2}} .
$$

Part d

From part b, we see that

$$
C=A+B=A+\frac{k-K}{k+K} A=\frac{2 k}{k+K} A
$$

Hence, from the results of part c,

$$
T=\frac{K}{k} \frac{4 k^{2}}{(k+K)^{2}}=\frac{4 k K}{(k+K)^{2}}
$$

Then,

$$
R+T=\left(\frac{k-K}{k+K}\right)^{2}+\frac{4 k K}{(k+K)^{2}}=\frac{k^{2}-2 k K+K^{2}+4 k K}{(k+K)^{2}}=\frac{(k+K)^{2}}{(k+K)^{2}}=1 .
$$

