Solutions

Chapter 2
Problem 1
Part a
(z,t) = w(m)e_iEt/h _ w(x>e—i(Eo+iF)t/h _ ¢<m)e—iEot/h€Ft/h_
Hence,
U*(2,1) = op*(x)e Pot/helt/n,
So

/ \II*\I/da::/ w*(x)eiEot/heFt/hw(x)e—iEot/hel“t/hdx:eQFt/h/ O () () da
As total probability should not change with time, the only way this can be physical is to have
I'=0.

Part b

Let ¢ be a solution of the time-independent Schrodinger equation with energy E. Then,

h? d*y
————— + Vo = E.
2m dxz? +Vy ¥
As both V and E are real, the complex conjugate of this equation is
h2 dZw*
—— D + VY = By,
2m dx? +Vy ¥

Hence, ¥* is also a solution of the same Schrodinger equation with the same energy F. As the
equation is linear in the wavefunction, the following two linear combinations are also solutions.

Yr=1+¢" and Py =i(p — 7).

That is,
h? d%y,
. r =F T
2m dz? +Vy ¥
and 0 o
h d*;
- Vi, = E;.
2m dzx? +Vy ¥

If 4 is not real, then ¥* is another distinct solution with the same energy. But then they can both
be replaced by the two real solutions ¢, and ;. That these are real is easily verified as follows.

Yr =W +Y) =9+ =Yy,

and,

¥i = (i( — 7)) = =i + i = .



Part ¢

Replacing by —x in the time-independent Schrodinger equation gives,

h? d*(—x) _
“om dnZ V(—z)p(—z) = By(—x).

If V(x) is even, then V(—x) = V(z). Hence,

B dp(—z)
o a2 V(x)y(—z) = EY(—z).
So, 1(z) and t(—=x) are both solutions of the same equations. Hence, from the linearity of the
equation, we conclude that the following are both solutions as well.

Ye(z) = ¥(2) +P(—x) and  Yo(x) = P(z) — ¥(—x).
Then the pair of solutions ¢ (x) and ¥ (—xz) can be replaced by the pair ¥(z) and ,(x). () is

Ye(=1) = (=) + (= (=2)) = e ().
Yo(x) is odd as
bo(—2) = (=2) = p(=(=2)) = =¢o().

Problem 2

The Schrodinger equation can be written in the following form.

d*y  2m
i ?[V(ﬂﬁ) — EJy.

If B < Vipin, then [V (x) — E] is positive for all . Hence, 1 and its second derivative have the same
sign for all z. Now consider the following cases of z dependence of i starting at any arbitrary x —

say © = x¢ and moving in the positive x direction.

1. 1 is positive and dip/dz is positive. Then d?¢/dz? is also positive from above observation.
This will make 1 increase in the positive z direction until it becomes infinity at x = oo.

2. 1) is positive and di)/dz is negative. Then d?v/dx? is also positive from above observation.
This will make v decrease and di)/dz increase in the positive z direction as long as 1 and
hence, d?y/dz? remain positive. This will continue until di/dx becomes zero at a minimum
point and proceeds to increase in the positive x direction. Then v will also increase beyond
the minimum point until it becomes infinity at * = co. However, if di/dx fails to become
zero before 1 becomes zero, then v and hence, d?1)/dz? will become negative and item 3 will
become applicable.

3. 1 is negative and diy/dx is negative. Then d?¢/dz? is also negative from above observation.
This will make ) decrease in the positive x direction until it becomes negative infinity at
T = —00.



4. 1) is negative and di/dz is positive. Then d?¢/dxz? is also negative from above observation.
This will make 1 increase and diy/dx decrease in the positive x direction as long as ¢ and
hence, d?v/dz? remain negative. This will continue until dv/dz becomes zero at a maximum
point and proceeds to decrease in the positive x direction. Then 1 will also decrease beyond
the maximum point until it becomes negative infinity at © = —oo. However, if diy/dz fails
to become zero before 1) becomes zero, then 1 and hence, d?¢/dz? will become positive and
item 1 will become applicable.

The above items cover all cases and they all lead to ¢ becoming infinite (positive or negative) at
x = 00. Hence, normalization will not be possible.

Problem 4
2 (o, 1 o a
(x) = 7/ xsin(nrx/a)dx = f/ z(1 — cos(2nmx/a))dr = —.
a Jo a Jo 2
(z%) = 2 /a 2% sin’(nrx/a)dr = 1 /a 2%(1 — cos(2nmz/a))dx = a* (1 — 1)
a Jo a Jo 3 277,271'2 '
a 99 a
(p) = 2(—ih)/ sin(mral?/a)i sin(nmz/a)dr = 2ifinm / sin(nmz/a) cos(nrx/a)dx = 0.
a 0 dx a? 0
2 a d? 2n’m?n? o n’m?h?
2 L2\ 2 . . s 2
(p7) = E(—zh) /0 sm(nwm/a)@ sin(nmx/a)dx = T/o sin®(nrz/a)dx = Z

1 1 a? 1 1 1 a? /1 2
2 2 2 _ 2 2 _
0 = (27) — {a)" =a (g‘znzwz)w—“ <3‘2n2W2‘4>—4<3‘n2W2)

_ nmh (1_ 2 )_h (n27r2_2>
72 = o \\3 T n2a2) T 2 3

This is the smallest for n = 1 and it is



Problem 15

The recursion formula is,

- —2(n —j)
T G+DG+2)
1= gy w T /s e = —Raa = day/15,
Hence,

Hs(€) = a1(§ — 467 /3 + 4€°/15)
To keep with convention,
4a1/15 =2°, Hence, a; = 120.

Thus,
Hs(€) = 326° — 1602 + 120¢.
For Hg(§),
—2(6 -0 —2(6 —2
ag = 1(X2)a0 = —6ag, a4 = 3(X4)a2 =4ag, ag=
Hence,

He(€) = ap(1 — 667 + 4¢* — 86°/15).

To keep with convention,

—8ap/15 = 2%, Hence, ag= —120.

Thus,
Hg (&) = 64£° — 480€* + 720£% — 120.

Problem 20
Part a

[e.e] e}

1= /\I'*\I/da; = AQ/ e~ 2kl gy = 2A2/ e 2% dy = A%/a.

—o0 0

Hence,
A = /a.

Part b

—2(6 —

5 %X 6

4

1o | o |
¢(k) = \/7277-( /_Oo \Ij(x,O)eflkzdl‘ = \/Z/_OO e*a|w|€fzkxdm

1

=)= [/0 e‘”e‘ikmdx—k/oo e_ame_ikxdx] == [ 1. +
21 |- 0 21 la — ik

4

a+ ik

]:

a4 = —8(10/15.

2a3 1
T a?+ k2



Part ¢

1> e mk2t o
\II(JI,t) — Tﬂ_‘/_ ¢(k)€l(kz hk2t/2 )dk:

Problem 21
Part a
1= / U*Wdy = A2 / em2a7% g0 — A2
—00
Hence,
- (2(1) 1/4
T
Part b

o(k) = \/12? /_0:0 U(x,0)e *2dy = \/% /_O:O e

0o ei(kx—tht/Qm)

/_ a? + k2

a3/2

™

dk.

o0

\/7
2a°

ax? —ikx A /oo —a(z?+ikz/a)
e "dr = e dz
V2T -0

_ ;e—kQ/(zia) [W o—ala? +ike/a—k?/(4a%)) g _ f;e_k?/(m) [m —alotik/(20))2 g,
_ A e [T A e 1 ke
V2T a  +2a (2ma)t/4
1 o0 i(ko—hk2t/2m. 1 0 k2/(4a) i(kz—Fk2
U(x,t) = \/ﬂ/oo d(k)e (kx—hk*t/2m) 11, (87r3a)1/4 [ e—k?/(4a) i(kz—hk>t/2m) 1.
1 o —ak? ikx
:(87T3a)1/4/ooe e dk
where,
R
~da  2m
With that,
1 o —a(k?—ikz/a €_$2/4a o —a(k2—ikx/a—z2 /402
\I/(m,t)—w/_ooe ( /)dk_(%”cz)l/‘*/_ooe (K2 —ikz/a—a?/40?) g
—z?/4a [e’e) -2 /40
:6/4/ emalk—iz/20)? g € ! \/?
(8m3a)V/4 J_ oo (8m3a)l/4V «



Note that,

as -y is defined to be,

Then,

1/4

U(z,t) = (2“> M1 ety
) 7_(_ ,_}/
Part c
T = (2a>1/4 1 et/
T * '
1/2
Uz, ) = 0T = (2a> L wraprt)
T 7Y
. (1 B 2iaht)’ o (1 B 2mm> ‘
m m
4a2h*t2
. 72 +fy 2 2w?
1y +1/4" = = =
Y2y (1 +A2e)  a

Hence,

2 2,.2

i} t 2_ /1= —2w*x
(e, ) =y Zwe

Part d

oo 2 o
(x) = / ﬂ:|\1’(x,t)|2dx =/ —w/ ze 2w gp — 0,
oo T Jeso

(p) = —zh/ \Il*—dx—zh(Qa/'y )/ | [2dz = 0.

1
<$2>:/_ 2|‘I’l‘t|dl’_\/> / 272wxd 4w2‘

© 020
2\ _ 2 *
) =—h /_OO\IJ de



PY_ 0 (2000 ) ()20 (v
ox2  Ox T 3 ¢ N T 3 Ox e

1/4
=— (2(1) 2—C’J(l — 2a2% /y2)e" /7 = —2—a(1 — 2ax? /%)

m) 7 72
Hence,
p2) = 5228 [ (12 200?020 2da = 1229 (1 (2a/92) [ 22)02da
P = 72 S0 7 B 72 v —00
2a 1 2a a 2a a(l + (2aht/m)?)
=12 (1 - (2a/~2 ) :h2<1—> == (1
2 < (2a/y )4w2 2 27y2w? 2 2(1 + 2iaht/m)a
B h22—a 2(1 + 2iaht/m) — (1 4 (2aht/m)?)\ h22—a 1 + diaht/m — (2aht/m)?)
42 2(1 + 2iaht/m) 42 2(1 + 2iaht/m)
2a [ (1+2i 2 2 4
_ 2o (U 2iaht/m) ) 20 (073 o
v2 \ 2(1 + 2iaht/m) 72 \ 2y
7 =\l — ()2 = 5
2w
op =/ (p?) = (p)? = Vah.
Hence,

OpOp = @ = h 1+ 4a2R2t2 /m?
P 2

2w

This has the minimum value at ¢ = 0 and increases with ¢.

Problem 34

Part a

For x < 0, the Schrédinger equation is

_fi@ = Ey

2m dxz?

The solution of this is

2mE

Y(x) = Ae’™ + Be™*®  where k= 7

For x > 0, the Schrédinger equation is

h? d%y
mdp? V0 Y



The equation is written in this form as E < V{. The solution of this is

Y(z) = Ce ™™ 4+ De™  where k= 2m(‘§2— E)
As the wavefunction cannot go to 0o at x = 0o, we need to impose the condition D = 0. So,
P(x)=Ce™ ™ for z>0.
The continuity condition on ¥ at x = 0 gives
A+B=C.
The continuity condition on di/dx at x = 0, gives
ikA —ikB = —kC.
Eliminating C' between these equations gives

ik(A— B) = —k(A+ B).

Hence,
[P
ik — kK
and the reflection coefficient is,
R:‘B: z:k—i—/ﬁQ:l.
A itk — K

Hence, everything is reflected and there is no transmission.

Part b

For x < 0, the Schrédinger equation is
h? d%y
Y _E
2m da? v

The solution of this is

2mE

Y(z) = A’ + Be=**  where k= ;

For x > 0, the Schrédinger equation is

h? d*y
— T - _(E- .
2m dz? ( Vo)v

The equation is written in this form as £ > V{. The solution of this is

2m(E — Vo)

P(z) = Ce? 4 De % where K = 2



As there can be no wave traveling in the negative = direction in this region, we need to impose the
condition D = 0. So, ‘
Y(z) = Ce®® for x> 0.

The continuity condition on v at x = 0 gives
A+B=C.
The continuity condition on di/dx at x = 0, gives
ikA —ikB =iKC.
Eliminating C' between these equations gives

ik(A— B) = iK(A + B).

Hence,
_k—-K
Ck+ K
and the reflection coefficient is,
2= (%)
R = |— =
A k+ K

which is less than 1 as long as £ > Vg > 0.

Part ¢

The definition of particle current (problem 1.14) is

i (0w, 0w i 0w o
J(x’t)_2m(8xqj \Pax>_2m<8m¢ ¢ax>

For x < 0, the incident particle wavefunction is
win = Aeikx.
So, the incident particle current is

ih hk
Jin = —(—2ik|A]*) = —|A|]?
5 (—20k|A[) = —|4]

For x > 0, the transmitted particle wavefunction is
Your = C e,

So, the transmitted particle current is
ih

Jout = %

hK
(—2K|C]?) = —C|?

m
Hence, the transmission coefficient is

Jow  K|C*  [E-=V|C]?

T= = — = .
Jin k |AJ? E |A]?

9



Part d

From part b, we see that

k—K 2k
¢ * +k—|—K k+ K

Hence, from the results of part c,

K 4 4K
k(k+K)?2  (k+K)?
Then,
R+T(k—K)2+ kK  k*—2kK + K?+4kK  (k+ K)?
\k+ K (k+K)2 (k+ K)? - (k+ K)?

10

=1.



