Problems

Chapter 6

1. In the following circuit, if the potential at point P is 50V, find the potentials at P_1 , P_2 and P_3 .

- 2. A car battery is rated to have an emf of 12V. However, when a voltmeter is connected to its terminals, it reads 1.5V. If the voltmeter has a resistance $400 \mathrm{k}\Omega$, find the internal resistance of the battery.
- 3. In the following circuit find the current in all branches and the potential difference between points a and b. $\mathcal{E}_1 = 5.0 \text{V}$, $\mathcal{E}_2 = 4.0 \text{V}$, $\mathcal{E}_3 = 2.0 \text{V}$, $R_1 = 10 \Omega$, and $R_2 = 5.0 \Omega$.

- 4. In the following network each resistor has a resistance R.
 - (a) Find the equivalent resistance between the points F and H.
 - (b) Find the equivalent resistance between the points F and G.

- 5. In the following circuit $R_1 = 5.0\Omega$, $R_2 = 2.0\Omega$, $\mathcal{E}_1 = 8.0\mathrm{V}$, $\mathcal{E}_2 = 4.0\mathrm{V}$, and $\mathcal{E}_3 = 2.0\mathrm{V}$.
 - (a) Find the current in each branch.
 - (b) Find the potential difference between the points a and b.

