Problems

Chapter 11

1. An ac power source is connected to an inductor of inductance $L=15.0\mathrm{H}$. The emf of the power source is given by

$$\mathcal{E} = \mathcal{E}_m \sin(\omega_d t),$$

where $\mathcal{E}_m = 25.0 \text{V}$ and $\omega_d = 400 \text{rad/sec}$.

- (a) Find the maximum current in the circuit.
- (b) Find the emf of the source at the time the current is a maximum.
- 2. An ac power source is connected to a capacitor of capacitance $C = 5.00 \mu F$. The emf of the power source is given by

$$\mathcal{E} = \mathcal{E}_m \sin(\omega_d t),$$

where $\mathcal{E}_m = 25.0 \text{V}$ and $\omega_d = 400 \text{rad/sec}$.

- (a) Find the maximum current in the circuit.
- (b) Find the emf of the source at the time the current is a maximum.
- 3. A series RLC circuit is connected to an ac source of variable frequency. The maximum emf is $\mathcal{E}_m = 10.0 \text{V}$, $R = 4.00 \Omega$, L = 2.00 H and $C = 2.00 \mu \text{F}$.
 - (a) Find the resonant frequency of the circuit.
 - (b) Find the amplitude of the voltage across the inductor at resonance.
 - (c) Explain why the voltage across an individual component (inductor) can be greater than the source voltage.
- 4. A coil of wire has both a resistance and an inductance. The inductance is known to be $L=0.095\mathrm{H}$, but the resistance is unknown. This coil is connected in series to a capacitor of capacitance $C=0.90\mu\mathrm{F}$ and an ac source of frequency 1000 Hz. The resulting phase constant is found to be 72°. Find the resistance of the coil.
- 5. A series RLC circuit is connected to an ac source of $\mathcal{E}_m=450\mathrm{V}$ and $\omega_d=950\mathrm{rad/sec}$. $R=40\Omega,\,L=0.50\mathrm{H}$ and $C=2.5\mu\mathrm{F}$.
 - (a) Find the impedence of the circuit.
 - (b) Find the current amplitude of the circuit.
 - (c) Find the phase constant between the emf and the current.
- 6. The figure below shows an ac power source of emf \mathcal{E} and internal resistance r connected to an external resistance R. Show that maximum power is dissipated across the external resistance if R = r.

. A transformer has a $100\mathrm{V}$ ac power source connected to its primary coil of 500 turns. If the secondary coil has 20 turns, find the secondary coil voltage.