
Parallel Processing Letters Vol. 8 No. 1 (1998) 77{81

c World Scienti�c Publishing Company

OPTIMAL SUBCUBE ALLOCATION IN A CIRCUIT-SWITCHED

FAULTY HYPERCUBE

BABACK A. IZADI

Department of Electronic Engineering Technology,

DeVry Institute of Technology, Columbus, OH 43209, U.S.A

and

F�USUN �OZG�UNER

Department of Electrical Engineering,

The Ohio State University, Columbus, OH 43210, U.S.A

ABSTRACT

In this paper, we present a scheme where a (d�1)-dimensional subcube is allocated

in a faulty d-dimensional circuit-switched hypercube in the presence of up to 2(d�1)

faulty nodes. The scheme is then extended to allocate a (d�1)-dimensional subcube in

the presence of a combination of faulty nodes and faulty links. Theoretical proofs and

simulation results are presented to analyze the performance of the scheme.

Keywords: Fault-tolerance, hypercube, subcube allocation, recon�guration

1. Introduction

Multiprocessors based on d-dimensional hypercubes have been widely used for a range
of applications. Research efforts have been undertaken to keep the multiprocessor func-
tional in the presence of faulty components. One of the approaches is finding the maximum
dimensional fault-free subcube of a faulty hypercube 1;2;3. However, two faulty nodes in
antipodal positions can destroy every fault-free (d � 1)-dimensional subcube and thus de-
grade the performance of the hypercube by a factor of 4. To overcome this, Chang and
Bhuyan 4 have proposed a scheme that utilizes the properties of circuit-switched commu-
nication to maintain a (d � 1)-dimensional subcube in the presence of up to d d2e faulty
nodes. In this paper, we present a scheme for circuit-switched hypercubes where a (d� 1)-
dimensional subcube is allocated in a faulty d-dimensional hypercube in the presence of
up to 2(d�1) faulty nodes and extend the scheme so that a functional (d � 1)-subcube is
maintained in the presence of a combination of faulty nodes and faulty links.

2. Construction of a Functional (d� 1)-Dimensional Subcube

We assume that faulty nodes retain their ability to communicate. If the distribution
of faulty nodes is such that every fault-free (d � 1)-dimensional subcube is destroyed, we



0110

0100

0000

0010

0001

0011

0101

0111 1110

1100

1000

1010

1111

1101

1001

1011

Faulty Node

Healthy Node

Sub1 Sub2

Figure 1: Construction of a 3-cube in a faulty 4-cube

use the following procedure to construct a functional (d � 1)-dimensional subcube. We
partition the hypercube into two faulty (d� 1)-dimensional subcubes along a dimensionj

(0 � j � d � 1) and label the subcube with the fewer number of faulty nodesSub1 and
the other subcubeSub2; Sub1 andSub2 form a 2(d�1) matching along dimensionj. In
our scheme,Sub1 becomes a functional(d� 1)-dimensional subcube by replacing each of
its faulty nodes with a healthy node inSub2 via edge-disjoint paths along dimensionj and
other possible edges inSub2. Fig. 1 illustrates a case in a4-dimensional hypercube. Setting
j = 3, the subcube 0XXX is maintained by establishing edge-disjoint paths between the
faulty nodes 0000, 0001, 0101 and 0110 inSub1 and the healthy nodes 1000, 1100, 1101
and 1111 respectively inSub2. Each of the edge-disjoint paths then becomes an extension
of the communication module of the faulty node inSub1 and the healthy node inSub2
functionally replaces the faulty one inSub1.

Given a faulty node� 2 Sub1, let’s denote�’s neighbor along dimensionj as� 2

Sub2. If � is a healthy node, it can replace�. If � is faulty, then a path through� to a
healthy node 2Sub2, that has not been assigned as a replacement, must be established.
Since the communication modules of faulty nodes are assumed to be healthy, this path can
go through faulty nodes as well as other assigned healthy nodes. The path0001! 1001!

1000 ! 1100 in Fig. 1 is an example of such a path. Note that 1000 which is part of this
path also replaces faulty node 0000 via path0000 ! 1000. However, the two paths use
disjoint edges.

In the discussion and the algorithm that follow, the set of nodes inSub2 are called
source nodes (SS) if both the nodes and their neighbors inSub1 are faulty. All other faulty
nodes inSub2 and the assigned healthy nodes are referred to as the set ofused nodes (SU ).
Nodes in SU can be intermediate nodes of a path. Finally, non-allocated healthy nodes in
Sub2 constitute the set oftarget nodes (ST ). For example, in Fig. 1, SS=f1001; 1110g,
ST=f1100; 1111g and SU=f1000; 1010; 1011; 1101g. In the algorithm to be presented,
nodes are assigned to these sets dynamically, as paths are established.

We next show that a functional(d � 1)-subcube can always be found in a hypercube
with up to2(d�1) faulty nodes. If every faulty node inSub1 is matched with a healthy node
in Sub2 along dimensionj, the reconfiguration can be accomplished by simply assigning
the matched healthy nodes to the faulty nodes. In the worst case, each faulty node in
Sub1 is matched with a faulty node inSub2 along dimensionj andSub1 andSub2 each
contain2(d�2) faulty nodes. Therefore,2(d�2) edge-disjoint paths from the source nodes
to the target nodes inSub2 have to be constructed. All other cases require fewer number of
edge-disjoint paths inSub2. We will prove for the worst case; other cases can similarly be

78



proven5 using Menger’s theorem6.

Lemma 1 In a d-dimensional hypercube, let a set of nodes be assigned to P and the rest be
grouped under Q. The minimum number of links that connects P to Q is min(jP j; jQj).7;5

Theorem 1 In a d-dimensional hypercube, let half of the nodes be labeled source nodes
and the remaining nodes be called target nodes. Within such a hypercube, there exists
2(d�1) edge-disjoint paths to connect each source to a distinct target node.

Proof. Given ad-dimensional hypercube graphG(V;E), let’s partitionV into two
subsetsP andQ = V � P such thatP = SS andQ = ST (jP j = jQj = 2(d�1)).
Moreover, let’s construct a new graphG0 by adding two nodess andt toG such that they
be connected to every node in the setP andQ via a single edge respectively (Fig. 2). The
number of edge-disjoint paths betweens andt in G0, according to Menger’s theorem6, is
equal to the mincut ofG0. The theorem is proven by showing that there always exists an
(s; t) mincut inG0 whose cutsize is greater than or equal to2(d�1).

1

2

i

2
d−1

1

2

j

2d−1
s

t

G

P

Q
Q

P
S

S

S

T

Figure 2: An(s; t) cut inG0

An (s; t) mincut inG0 may exist ats, t,G, or some combination of them. By construc-
tion, the cutsize ats andt is equal to2(d�1). Consider a general cut inG0 as depicted in
Fig. 2, crossingi of the edges connectings to the nodes within SS , k of the edges ofG, and
j of the edges connecting the nodes of ST to t (0 � i; j � 2(d�1)). Only the case where
i + j < 2(d�1) needs to be investigated since the other meets the minimum cutsize on its
own. The cut in Fig. 2 splits the nodes into two setsP 0 andQ0. The number of source
nodes in the setQ0 is i. The number of target nodes in the same set is2(d�1) � j. Hence,
the total number of source and target nodes inQ0 is i + 2(d�1) � j. Following the same
reasoning, the total number of source and target nodes inP 0 is j+2(d�1)� i. EitherjP 0j or
jQ0j is less than or equal to2(d�1). Without loss of generality, let it beP 0. From Lemma 1,
the minimum number of links connectingP 0 andQ0 is k = min(jP 0j; jQ0j). Thus, the
above cut must cross at leastk = j + 2(d�1) � i links inG. The size of the(P 0; Q0) cut is
then given byj(P 0; Q0)j � i + j + j + 2(d�1) � i or j(P 0; Q0)j � 2j + 2(d�1) � 2(d�1).
A similar inequality results ifjQ0j < 2(d�1), j(P 0; Q0)j � 2i+ 2(d�1) � 2(d�1).

From the above inequalities it follows that there always exists2(d�1) edge-disjoint
paths froms to t. Since by construction, there always exists2(d�1) edges froms to 2(d�1)

source nodes and2(d�1) edges fromt to 2(d�1) target nodes, each of the2(d�1) paths must
connect a source node to a target node2.

An optimal reconfiguration algorithm, to establish edge-disjoint paths between the

79



nodes in SS and the nodes in ST within Sub2, can be developed by utilizing the maxflow
/ mincut algorithm6. To apply the maxflow/mincut algorithm, a digraph representation
of Fig. 2 (digraphG0) needs to be constructed. To avoid construction of digraphG 0, we
implemented a near optimal reconfiguration algorithm. The algorithm is near optimal since
there can be cases where the reconfiguration fails even though Menger’s theorem holds.
The algorithm utilizes Lee’s path-finding algorithm8 to find a set of candidate target nodes.
It begins by constructing a breadth-first search of minimum depth inSub2 from each node
in SS . If a target node is found, a path is formed between the source and the target node.
The algorithm guarantees that a path to a target node will be found, if there exists one, and
the path will be the shortest possible8. Once a path is formed, the algorithm removes the
links associated with that path fromSub2. It also marks both the source node and the target
node as used nodes and assigns them to SU . The process is repeated on the new resultant
structure for a higher depthi. The reconfiguration is completed if SS becomes an empty
set. Reconfiguration fails if distancei becomes greater than2(d�1)�1 which is the longest
acyclic path inSub2.

3. Simulation Results

We implemented the near optimal algorithm for various dimensions of the hypercube
(up tod = 10). 10000 simulation runs were performed for randomly placed2(d�1) faulty
nodes. Our simulations resulted in100% reconfiguration. To find a fault-free(d � 1)-

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20

Number of Faulty Links

P
er

ce
nt

 R
ec

on
fig

ur
ed

Reconfigurability Under Random Fault Distribution

Dimension of hypercube = 10

0

10

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35

Number of Faulty Links and Faulty Nodes

P
er

ce
nt

 R
ec

on
fig

ur
ed

Reconfigurability Under Random Fault Distribution

Dimension of hypercube = 10

(a) (b)

Figure 3: Percentage(d� 1)-subcubes in presence of faulty (a) links (b) links and nodes

dimensional subcube in the presence of a combination of faulty nodes and faulty links,
our algorithm first checks whether a(d � 1)-dimensional subcube without any faulty link
exists. If there exists one, it is labeledSub1. Next, Lee’s path-finding algorithm is used to
find edge-disjoint paths from the faulty nodes inSub1 to the healthy nodes inSub2 via the
healthy edges fromSub1 to Sub2 and the healthy edges withinSub2. The simulation results
for a hypercube of dimension10 under randomly placed faulty links and combination of
faulty nodes and faulty links are given in Fig. 3. In our simulation we have assumed that
the probability of having a node failure is the same as having a link failure. From Fig. 3,
it follows that a functional(d � 1)-dimensional subcube can exist provided the number of
faulty links is relatively small.

80



4. References

1. B. Becker and H. U. Simon, \How robust is the n-cube?," Proc. 27th Annu. Symp.
Foundations Comput. Sci., pp. 283{291, October 1986.

2. F. �Ozg�uner and C. Aykanat, \A recon�guration algorithm for fault tolerance in a

hypercube m ultiprocessor,"Information Processing Letters, vol. 29, pp. 247{254,
Novem ber 1988.

3. N. Graham, F. Harary, M. Livingston, and Q. Stout, \Subcube fault-tolerance in

hypercubes," Information and Computation, vol. 102, no. 2, pp. 280{314, 1993.

4. Y. Chang and L. N. Bhuy an, \F ault-tolerant subcube allocation in hypercubes,"

Proceedings of the IEEE International Conference on Parallel Processing, pp. I132{
I136, 1993.

5. B. Izadi, \Design of fault-tolerant distributed memory multiprocessors," Ph.D. the-
sis, the Ohio State University, 1995.

6. C. J. Colbourn, The Combinatorics of Network Reliability. Oxford University Press,
1987.

7. F. Chung, Z. F� uredi,R. Graham, and P. Seymour, \On induced subgraphs of the

cube," Journal of Combinational Theory, vol. 49, pp. 180{187, 1988.

8. C. Y. Lee, \An algorithm for path connection and its applications," IRE Transac-
tions on Electronic Computers, vol. ec-10, pp. 346{365, 1961.

81


