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ABSTRACT

In this paper, we present a strongly fault-tolerant de-
sign for a d-dimensional hypercube multiprocessor and ex-
amine its reconfigurability. The augmented hypercube has
a spare node connected to each node of an i-cube and the
spare nodes are also connected as a (d � i)-dimensional
hypercube. By utilizing the circuit-switched capabilities of
the communication modules of the spare nodes, large num-
ber of faulty nodes and faulty links can be tolerated. Both
theoretical and experimental results are presented. Com-
pared with other proposed schemes, our approach can tol-
erate significantly more faulty nodes and faulty links with a
low overhead and no performance degradation.

KEYWORDS: Fault-tolerant multiprocessors, circuit-
switched hypercube, reconfiguration.

1 INTRODUCTION

Multiprocessors based on the hypercube interconnec-
tion topology are being widely used for a range of scientific
and real-time applications. As the size of the hypercube
multicomputer grows, due to its complexity, the probabil-
ity of node and/or link failures becomes high. Therefore,
it is crucial that such systems be able to withstand a large
number of faults for a reasonable amount of time.

Two main approaches to tolerate faults have been
investigated. Some researchers have devised techniques
where the healthy segment of the hypercube simulates the
entire machine [12]; in practice however, these techniques
normally result in a considerable performance degrada-
tion. To sustain the same level of performance, other re-
searchers have investigated hardware schemes for the hy-
percube where spare nodes and/or links are used to replace
the faulty ones. In the literature a reconfigurable system
that retains the same service level, as well as keeping the
same system topology after the occurrence of faults, is ei-
ther referred to as astrongly fault-tolerant or astructurally
fault-tolerant [7] system.

Two classes of hardware schemes have been pro-
posed. Some researchers have examined local reconfigura-
tion techniques where a spare node can only replace a faulty
node within a given subset [5, 3, 2, 1]. A common draw-

back of these approaches is low utilization of spare nodes.
Furthermore, they are not strongly fault tolerant. The sec-
ond class of approaches uses global reconfiguration and is
based on creating a supergraph of the hypercube such that if
a node and its associated links are removed from the super-
graph, the remaining graph would be isomorphic to the hy-
percube [8, 4, 7]. The disadvantage of these schemes is that
the degree of each node becomes very large which makes
their implementation impractical for any realistick.

In this paper, we propose a global reconfiguration
scheme that utilizes circuit-switched communication to
make the hypercube strongly fault tolerant. In our scheme,
a d-dimensional hypercube is divided into2(d�i) subcubes
of dimensioni; we call each of these subcubes a cluster.
One spare node is assigned to each cluster; the spare node
is connected to every regular node of its cluster via an intra-
cluster spare link. Spare nodes are also interconnected to
form a (d � i)-dimensional spare cube using inter-cluster
spare links. We call the resultant structure anenhanced
cluster hypercube (ECH). Figure 1 depicts an ECH of di-
mensiond = 4 with clusters of dimensioni = 2. In the fig-
ure, the spare links are shown using lighter lines. By utiliz-
ing the circuit-switched communication modules of various
spare nodes, edge-disjoint paths between multiple nodes of
a cluster and multiple spare nodes can be made. For exam-
ple in Figure 1, using the spare links, nodes 0100, 0110, and
0111 in cluster01XX can be connected to the spare nodes
01SS, 00SS, and 11SS respectively without sharing any of
the spare links. We use this property to show that multiple
faulty nodes in a cluster can be tolerated. Faulty links are
bypassed by establishing parallel paths using spare links.
We present both theoretical and experimental results. Our
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theoretical results, representing the worst case scenario, in-
dicate that the ECH can tolerate2(d�i) faulty nodes for up
to 3 faulty nodes per cluster; proof of some of the theorems
are omitted due to space limitation [9]. Our experimen-
tal results, based on random fault distribution, have yielded
100% fault coverage.

2 NOTATION AND DEFINITIONS

Each node of ad-dimensional hypercube is repre-
sented byd-tuple (bd�1 � � � bi � � � b0), wherebi 2 f0; 1g.
A subcube is defined by a uniqued-tuplef0; 1; Xgd where
“0” and “1” are the bound coordinates, and\X” repre-
sents thefree coordinates. A(d � k)-dimensional subcube
is represented by ad-tuple with k bound coordinates and
(d � k) free coordinates. Each spare is uniquely defined
by d-tuplef0; 1; Sgd where “0” and “1” represent the bound
coordinates andS corresponds to the free coordinates of the
spare's assigned cluster. A link is specified uniquely byd-
tuplef0; 1;-gd where “-” can be substituted by “0” and “1”
to identify its connecting nodes. An intra-cluster spare link
(a link connecting the spare node to a node within the clus-
ter) is defined by a(d + 1)-tuple f0; 1; Sg(d+1) whereS is
inserted to the left of the(i � 1)th bit of the regular node
ID which the spare node is connected to. For example, the
intra-cluster spare link connecting the spare node00SS and
node0001 is identified as00S01. An inter-cluster spare link
(a link connecting two spare nodes) is defined by ad-tuple
f0; 1; S;-gd where “-” can be substituted by “0” and “1” to
identify its connecting spare nodes. Hence, the inter-cluster
spare link connecting spare nodes01SS and00SS is la-
beled 0-SS.

3 OVERVIEW OF THE ENHANCED
CLUSTER APPROACH

In an ECH of dimensiond and clusters of dimension
i, the degree of each regular and spare node is(d + 1) and
2i + (d � i) respectively. Note that fori = 1, the degree
of both regular and spare nodes are(d + 1). The resultant
topology has the advantage of using the same node archi-
tecture in both the regular and the spare nodes.

It is assumed that a given faulty node retains its com-
munication capability. This is a common assumption since
in hypercube multiprocessors such as theiPSC/860 the
computation and the communication modules of a node are
separate. Furthermore, since the complexity of the compu-
tation module is much greater than that of the communi-
cation one, the probability of a failure in the computation
module is much higher. This assumption may be avoided
by duplicating the communication module in each node.

In hypercubes with circuit-switched communication
modules, the cost of communication is nearly constant be-
tween any two given nodes. To facilitate reconfiguration,
the routing channels described below are used at each node.
The block diagrams of a regular node router and a spare
node router for the 4-dimensional ECH of Figure 1 are

depicted in Figure 2. The regular node router consists of
d+ 1 = 5 routing channels. The spare node router is made
of 2i + (d � i) = 6 routing channels. Each routing chan-
nel consists of one channel in and one channel out. For
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example in Figure 2(a), the Routing Channel 0 consists of
Ch0 In and Ch0 Out allowing the regular node to be con-
nected to its regular neighboring node in dimension 0. Sim-
ilarly, the Spare Routing Channel consists of Spare In and
Spare Out allowing the regular node to be linked to its lo-
cal spare node. In Figure 2(b), the Spare Routing Channels
connect the spare node to its neighboring spare nodes while
the Node Routing Channels link the spare node to the regu-
lar nodes within its cluster.

To bypass a faulty link, it is necessary to connect the
appropriate channels of the routing channels together. For
example in Figure 2(b), connecting the routing channels of
Node 00 and Node 01 (linking Node 00 In to Node 01 and
Node 01 In to Node 00 Out) provides an alternate path to the
intra-cluster link 010- in the subcube01XX of Figure 1.
Spare In, Spare Out (Figure 2(a)) of each router of nodes
0100 and0101 are then connected to Node 00 Out, Node 00
In and Node 01 Out, Node 01 In of the spare node router. To
provide an alternate path to an inter-cluster link, more than
one spare node router is needed. For example, in Figure 1,
the link 0-01 can be bypassed by the path01S01 ! 0-
SS ! 00S01 as follows. Node0101 is connected to the
spare node01SS by linking node0101's Spare In and Spare
Out to the spare node01SS 's Node 01 Out and Node 01
In respectively. Similarly, node0001 is connected to the
spare node00SS. Also, the spare nodes01SS and00SS
are interconnected by linking the spare node01SS 's Spare
Ch0 Out and Spare Ch0 In to the spare node00SS 's Spare



Ch0 In and Spare Ch0 Out.

Connecting a spare node to a regular nodes is done to
tolerate a node failure. If the spare node resides in the clus-
ter of the faulty node, the Spare Routing Channel ( Spare
In and Spare Out) of the faulty node is connected to the ap-
propriate Node Routing Channel of the spare node. If the
assigned spare node and the faulty node belong to differ-
ent clusters, a dedicated path to connect them needs to be
established. Such a path can be constructed by linking the
intermediate spare nodes of the spare hypercube. For ex-
ample, in Figure 1, if the spare node10SS is to replace the
faulty node0101, the appropriate channels of node0101
to the spare node01SS, the spare node01SS to the spare
node00SS, and the spare node00SS to the spare node
10SS needs to be interconnected. Once such a path is estab-
lished, due to the capabilities of the circuit-switched routing
modules, the physical location of the faulty node and its as-
signed spare node is irrelevant.

There are three cases which may involve routing data
through a faulty node. The first one is when the message
originates from the faulty node. Here, its spare replacement
sends its data via its Injection Channel (Figure 2(b)) out
to the appropriate NodeXX Out channel. The message
is then routed to thecommunication module (CM) of the
faulty node via Spare In. Depending on the final destina-
tion node, any of Channel Outs may be selected. The sec-
ond case is when the destination of the message is the faulty
node. Once the data reaches the CM of the faulty node, it
is automatically routed to the channel Spare Out instead of
Consumption Channel. The spare node's CM would conse-
quently receive the message using the appropriate channel
(NodeXX In). The message is then sent to the computa-
tion module of the spare node via Consumption Channel.
The third case is when the faulty node is neither the source
nor the destination of the message but is used merely as an
intermediate switch connection. In this case, the spare node
is not involved at all, and routing is done normally. There-
fore, each spare node has dual functions. One is to be the
logical replacement for a faulty node. The other is to be an
intermediate switch connection. Both functions may be ac-
tive at the same time. Note that the connection of the spare
node router to the active node(s) is established during the
reconfiguration and remains intact thereafter.

Upon detecting a node failure, the spare node within
the respective cluster logically replaces the faulty node. If
the local spare node is not available, an available spare node
from a different cluster may be used. The spare node's CM
then forwards messages bound for other spare nodes as well
as forwarding/receiving its data to/from other nodes via the
CM of the faulty node as discussed. Therefore, no modifi-
cation to the available computation or communication algo-
rithm is necessary.
Example: Figure 3 illustrates the reconfiguration of the
ECH upon detection of faults in the links 0-00, 100- and
nodes 1011, 1100, 1110, 1111. The spare nodes 10SS,
01SS, 11SS, and 00SS are used to replace the faulty nodes

1011, 1100, 1110, and 1111 respectively. Note that by uti-
lizing the intermediate spare nodes, in effect, 3 logical spare
nodes are present in cluster11XX . Also, the intra-cluster
faulty link 100- and the inter-cluster faulty link 0-00 are tol-
erated by establishing the indicated parallel paths.
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Figure 3. RECONFIGURATION OF AN EN-
HANCED CLUSTER HYPERCUBE

4 THEORETICAL RESULTS

Let's define a cluster with one or more faulty nodes as
a faulty cluster. Since within a cluster, the local spare node
is directly connected to every node, the number of edge-
disjoint paths between the faulty nodes of a cluster and the
unassigned spare nodes in other clusters is the same as the
number of edge-disjoint paths between the local spare node
of the faulty cluster and the unassigned spare nodes. The re-
configurability of the ECH is then a function of number of
dedicated and edge-disjoint paths, within the spare hyper-
cube, that can be established between the local spare node
of a cluster with multiple faulty nodes and the available
spare nodes in the fault-free clusters. We define the number
of such edge-disjoint paths that must be constructed from a
spare node as theconnection requirement (CR) of that spare
node. For example in Figure 3, since 2 out of 3 logical spare
nodes of cluster11XX physically belong to other clusters,
the CR of the spare node 11SS is 2. Note that the CR of
a spare node is equal to the number of faulty nodes in its
cluster minus one.

The availability of these edge-disjoint paths is a con-
nectivity issue of the spare hypercube. The following theo-
rems examine the connectivity of the spare cube and there-
fore the reconfigurability of the ECH. We first set the upper
bound on the number of faulty nodes that can be tolerated
in a cluster. We then examine the lower bound on the num-
ber of the faulty nodes that an ECH can tolerate for any
fault distribution. Finally, we examine the conditions under
which maximum number of faulty nodes can be tolerated.

Theorem 1 The upper bound on the number of tolerated
faulty nodes in a cluster that a d-dimensional ECH with
cluster dimension of i can tolerate is (d� i+ 1).

Theorem 2 A d-dimensional ECH with cluster dimension
of i can tolerate (d � i + 1) faulty nodes regardless of the
fault distribution.

Let's group the spare nodes into three sets; SS (set
of source nodes), SU (set of used nodes), and ST (set of



target nodes). A source node is a spare node in a clus-
ter with multiple faulty nodes. The set SS then represents
the spare nodes with a CR greater than0. ST is the set
of unassigned spare nodes, and SU consists of spare nodes
that have been assigned to faulty nodes and have a CR of
0. For example, considering only the faulty nodes in Fig-
ure 3, after assigning the local spare node to a local faulty
node in each faulty cluster, SS = f11SSg, SU = f10SSg,
and ST = f01SS; 00SSg. During the reconfiguration algo-
rithm, which is discussed in Section 5, the spare nodes are
dynamically assigned to the various sets. To illustrate this,
suppose the CR of a spare node� 2 SS is greater than 0 and
there is a dedicated path from� to � 2 ST . Consequently,
� replaces a faulty node in the cluster of� via the dedicated
path.� is then called used and is assigned to SU . Also, the
CR of � is reduced by one. If the CR of � becomes zero, it
is also marked as used and is assigned to SU . The ECH is
called reconfigured when SS becomes an empty set.

As mentioned before, the reconfigurability of the
ECH is a function of the number of dedicated and edge-
disjoint paths, within the spare cube, that can be established
between the local spare nodes (nodes in SS) of the clusters
with multiple faulty nodes and the available spare nodes
(nodes in ST ) of the fault-free clusters. However, spare
nodes do not have to be interconnected as a cube. Obvi-
ously, if the spare nodes are interconnected as a complete
graph, the ECH can tolerate up to2(d�i) regardless of fault
distribution. Hence, the reconfigurability of the ECH is a di-
rect consequence of the connectivity of the topology which
interconnects the spare nodes. Let's represent the topology
of the graph connecting the spare nodes byG = (V;E)
whereV =SS

S
SU
S

ST andE consists of the appropriate
spare links. Let the CR of a noden 2 SS be represented
by CR(n) and denote sum of the CR 's of all nodes in a set
P as

P
n2P

CR(n). Since the number of faulty nodes can't
exceed the number of spare nodes,jST j �

P
n2SS

CR(n).
The following theorem examines the connectivity ofG as it
pertains to the reconfigurability of the ECH.

Theorem 3 Consider a graph G(V;E) where V =
SS
S

SU
S

ST . The necessary and sufficient condition for
every node n 2 SS to have CR(n) edge-disjoint paths to
CR(n) nodes in ST , is that the minimum number of edges
leaving any subset of nodesP � V be greater than or equal
to
P

n2(P
T

SS)
CR(n)� jP

T
ST j.

Proof: We first prove the necessary condition: if from ev-
ery noden 2 SS , there exists CR(n) edge-disjoint paths
to CR(n) nodes in ST , then the minimum number of edges
leaving any subset of nodesP � V must be greater than
or equal to

P
n2(P

T
SS)

CR(n) � jP
T

ST j which is sum

of the CR 's of SS nodes withinP minus the number of ST
nodes inP . Let's consider a subsetP 1 � SS . Each of the
edge-disjoint paths from a node in SS to a node in ST must
be carried over at least one edge in the cutset (P1,V � P1).
Therefore sum of the CR's of the nodes inP 1, which repre-
sents the total required number of edge-disjoint paths from

the nodes inP1 to the nodes inST , must be smaller than
or equal to the number of edges in the cutset (P1,V � P1).
Now, let's consider a subsetP � V and denote the graph
interconnecting the nodes ofP asg. Obviously,g is a sub-
graph ofG. Within g, there exists onlyjP

T
ST j target

nodes. Therefore, at mostjP
T

ST j of the edge-disjoint
paths may exist ing. The rest of the paths must then be car-
ried over the cutset(P; V � P ). Therefore, the necessary
condition follows.

We next prove the sufficient condition: if the mini-
mum number of edges leaving any subset of nodesP � V

is greater than or equal to
P

n2(P
T

SS)
CR(n) � jP

T

ST j, every noden 2 SS would have CR(n) edge-disjoint
paths to CR(n) nodes in ST . Let's create a new graph
G0 = (V 0; E0) by adding two nodess andt to G as spec-
ified below and depicted by Figure 4. Each node in ST is
connected tot via a single edge. Each noden 2 SS is con-
nected tos via CR(n) parallel edges. Let sum of the CR
of all nodes in SS be L. Number of edge-disjoint paths be-
tweens andt in G0, according toMenger's theorem [6], is
equal to the size of the mincut inG0. We will show that there
always exists an(s; t) mincut inG0 whose size is equal to
L. The mincut inG0 may exist ats, t, G, or some combina-
tion of them. By construction, the size of the cut ats equals
L. Similarly, the cutsize att is greater than or equal to L
sincejST j �

P
n2SS

CR(n) = L. Per stated condition, for
P = s

S
SS orP = s

S
SS
S

SU , the cut(P; V 0

�P )must
have a cutsize greater than or equal to L. Consider a general

s t

S
S S
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Figure 4. A CUT IN GRAPH G0

cut inG0 crossing L1 of the edges connectings to SS nodes,
L2 edges ofG, and L3 of the edges connecting ST nodes to
t (Figure 4). Number of ST nodes on the unshaded side of
the cut is L3. Sum of the CR's of SS nodes within the same
side of the cut is L� L1. Therefore, the stated condition
can be formulated as L2 � (L� L1)� L3 or L1+ L2+ L3 �

L. From this inequality, it follows that any cut inG0 has a
cutsize greater than or equal to L. Therefore, L is the size
of the mincut. Hence, L edge-disjoint paths exist between
nodess andt. Then, each of thes-t edge-disjoint paths must
pass through a unique node in ST because each node in ST
is connected tot via a single edge. Since there only exists
L edges froms (one per path), the number of edge-disjoint
paths froms that passes through each noden 2 SS is equal
to CR(n). Therefore, each noden 2 SS can make CR(n)
edge-disjoint paths to CR(n) distinct nodes in ST .



We next apply Theorem 3 to the spare cube and exam-
ine the reconfigurability of the ECH. Theorems 4 and 5 set
the bounds on the number of faulty nodes per cluster, under
the maximum number of faulty nodes, that can be tolerated
regardless of the fault distribution.

Theorem 4 Clusters with 4 or more faulty nodes can cause
the reconfiguration of a d-dimensional ECH to fail.

Proof: We prove the theorem by showing that Theorem 3
does not hold for a distribution of 4 faulty nodes per cluster.
Let SS containk1 nodes with a CR of 1, k2 nodes with a
CR of 2, andk3 nodes with a CR of 3. Also, let ST and
SU containk0 andku nodes respectively. Next consider a
subsetP � V with j1 � k1 nodes with a CR of 1, j2 �
k2 nodes with a CR of 2, j3 � k3 nodes with a CR of 3,
j0 � k0 unassigned spare nodes, andju � ku used nodes.
Since the degree of each spare node within the spare cube
is (d � i), the number of links crossingP is (d � i)j3 +
(d � i)j2 + (d � i)j1 + (d � i)j0 + (d � i)ju � l wherel
represents the number of internal links among the nodes in
P . If an ECH is to tolerate up to 4 faulty nodes per cluster,
by Theorem 3 it is necessary to show that(d� i)(j3+ j2+
j1 + j0 + ju)� l � 3j3 +2j2 + j1 � j0. Consider the case
whereP = SS and every node has a CR of 3, (j3 = k3 =
2(d�i�2), j2 = j1 = j0 = 0). The above inequality can
then be rewritten as(d� i) � 2(d�i�2)

� l � 3 � 2(d�i�2).
The left side of the inequality represents the total number
of links crossingP . When2(d�i�2) nodes form a subcube
of dimension(d� i� 2), the number of links crossingP is
((d� i)�(d� i�2))�2(d�i�2) = 2�2(d�i�2). Therefore,
2 � 2(d�i�2)

6� 3 � 2(d�i�2) and hence by Theorem 3, the
ECH may not be able to tolerate 4 faulty nodes per cluster.

Theorem 5 The ECH can tolerate 2(d�i) faulty nodes with
up to 3 faulty nodes per cluster regardless of the fault dis-
tribution.

5 EXPERIMENTAL RESULTS

As discussed above, some patterns of4 faulty nodes
per cluster can cause the reconfiguration of the ECH to fail.
However, the probability that the faulty nodes can form
such patterns is very low. Therefore, a more realistic mea-
sure of the reconfigurability of the ECH would be under
random fault distributions.

We next examine the reconfiguration algorithm. An
optimal reconfiguration algorithm can be developed by uti-
lizing the maxflow/mincut algorithm [13]. Here, optimality
is measured as the ability to assign a spare node to every
faulty node whenever such an assignment is feasible vis-
a-vis Theorem 3. The main drawback to reconfiguration
using the maxflow/mincut algorithm is that a new digraph
has to be constructed and the spare node assignment has
to be done by the host processor. To overcome these de-
ficiencies, we next present a near optimal reconfiguration
algorithm which is calledAlloc-Spare. The algorithm con-
sists of three parts as specified below:

1. Early Abort: The following solvability checks are per-
formed to determine whether the reconfiguration is feasible.
If the total number of faulty nodes is greater than the num-
ber of spare nodes(2(d�i)), the reconfiguration fails. If the
CR of a spare node is greater than(d � i), the reconfigura-
tion fails due to Theorem 1. The reconfiguration also fails
if sum of the CR of any two neighboring spare nodes in the
spare cube is greater than2(d� i)� 2 (Theorem 3).
2. Local Assignment: The local spare node of every faulty
cluster is assigned to a faulty node within the cluster. If all
faulty nodes are covered, the ECH is reconfigured.
3. Non-Local Assignment: To find a set of candidate
spare nodes that can be assigned to a faulty node, we utilize
Lee's path-finding algorithm [11]. The algorithm begins
by constructing a breadth-first search of minimum depthj

(1 � j � 2(d�i) � 1) in the spare cube from the local
spare node of a faulty cluster with a non-zero CR. If a free
spare node is found, a path to the spare is formed. The al-
gorithm guarantees that a path to a spare node will be found
if there exits one and the path will be the shortest possi-
ble [11]. Therefore, all faulty nodes that are one link away
from available spare nodes (at distance1) are assigned first.
Once a path is formed, the links associated with that path
are deleted from the spare cube, resulting in a new struc-
ture. If there still remains some uncovered faulty nodes, a
solvability test to check the CR of neighboring spare nodes,
similar to Early Abort, is performed on the new structure
and Step3 is repeated for a higher depthj. Reconfiguration
fails if j > (2(d�i)� 1) which is the longest acyclic path in
the spare cube.

We implemented algorithm Alloc-Spare for an ECH
of dimension 20 with the spare cube of dimension 10. The
simulation result for up to1024 randomly placed faulty
nodes is shown in Figure 5.1000 simulation runs were
performed for each given number of faulty nodes. The
other plots in the figure pertain to the schemes proposed
by [5, 10], [1], and [2] respectively. The result indicates
100% reconfigurability for the ECH under the random fault
distribution.

To examine the limitation of the ECH under random
fault distribution, we next assumed that the number of faulty
nodes in the ECH is the maximum (2(d�i)). We then as-
sumed that each faulty cluster contains a fixed number of
faulty nodes. Note that by Theorem 1, a faulty cluster may
have up to(d� i+1) faulty nodes. Under maximum num-
ber of faulty nodes, the number of faulty clusters is equal to
the number of faulty nodes divided by the given number of
faulty nodes per cluster. If the division results in a remain-
der, an additional cluster with the number of faulty nodes
equal to the remainder needs to be allocated as well. The
faulty clusters were then randomly allocated in the ECH
and Alloc-Spare algorithm was applied to perform recon-
figuration. The simulation results for an ECH of dimension
20 under different sizes of the spare cube are shown in Fig-
ure 6 where each point in the graph represents the average of
1000 simulation runs. Figure 6 indicates the percent num-



ber of cases where the ECH was reconfigured. The figure
shows that under random fault distribution, an ECH with a
large spare cube can nearly achieve100% reconfiguration
for up to (d� i�2) faulty nodes per cluster which is much
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higher than the theoretical lower bound of 3 faulty nodes
per cluster. Next we calculated the average number of
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Figure 6. RECONFIGURATION OF THE ECH
UNDER MAX. NUMBER OF FAULTY NODES

spare links of the spare cube per spare node that are left un-
used after the reconfiguration. Our results indicate that an
ECH under the maximum number of faulty nodes and the
highest number of reconfigurable faulty nodes per cluster,
uses on the average less than3 spare links per spare node to
reconfigure. Therefore, the spare cube is a well connected
graph via the unused spare links even after the reconfigura-
tion. For the case depicted in Figure 5, the average number
of utilized spare links per spare node is nearly 1. Hence, the
following conclusion can be made. The ECH can tolerate a
large number of faulty nodes with a very high probability.
Since fast reconfiguration is very important in presence of
faults, our near-optimal reconfiguration algorithm is more
appropriate than the optimal one with negligible difference
in the end result.

6 CONCLUSION

In this paper, we have presented a strongly fault-
tolerant design for ad-dimensional hypercube multiproces-
sor and examined its reconfigurability. Theoretical results
indicate that our scheme can always tolerate the maximum
number of faulty nodes with up to 3 faulty nodes per cluster.
Our experimental results suggest that the maximum num-
ber of faulty nodes can be tolerated. Although our scheme
is global in the sense that any spare node can replace any
faulty node, our reconfiguration algorithm can be imple-
mented in a distributed manner[9]. By combining the re-
configuration algorithms for faulty nodes and faulty links,
combinations of node and link failures are tolerated. Com-
pared to other proposed schemes, the ECH can tolerate sig-
nificantly more faults for the same overhead.
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