
Reconfiguration in a Circuit-Switched k-ary Tree
Multiprocessor

Baback A. Izadi
Electronic Engineering Technology Department

DeVry Institute of Technology
Columbus, OH 43209 U.S.A

bai@devrycols.edu

FüsunÖzgüner
Department of Electrical Engineering

The Ohio State University
Columbus, OH 43210 U.S.A.
ozguner@ee.eng.ohio-state.edu

Abstract In this paper, we present a strongly fault-
tolerant design for the l-level k-ary tree multiproces-
sor and examine its reconfigurability. Our design as-
signs one spare node to the regular nodes of each sub-
tree with lc levels. Moreover, spare nodes are inter-
connected to form a spare tree. Our approach utilizes
the circuit-switched capabilities of the communication
modules of the spare nodes to tolerate a large number of
faulty nodes and faulty links. Both theoretical and sim-
ulation results are examined. Compared with other pro-
posed schemes, our approach can tolerate significantly
more faulty nodes and faulty links with a low overhead
and no performance degradation.

Keywords: fault tolerant,k-ary trees, spare allocation,
reconfiguration, augmented multiprocessors

1 Introduction

The tree is a useful topology for networks of hi-
erarchical computing systems and has been used
in the design of multicomputers [1]. One attrac-
tive feature of the tree-based architecture withn-
nodes is that any two nodes can exchange informa-
tion inO(logn) time. A major disadvantage of this
topology is that a single faulty node or faulty link
can disable the operation of the entire tree. Hence,
some form of fault tolerance is essential.

Fault-tolerant trees have been examined by a
number of researchers where spare nodes and spare
links are used to replace the faulty ones. An op-
timal 1-fault-tolerantk-ary tree withl-levels was
proposed by Hayes [2]. The scheme fork = 4

and l = 3 is depicted in Figure 1. Upon a node

failure, using the spare nodes and the spare links
(depicted by dashed lines in the figure), ak-ary
tree with l-levels is maintained. In the literature,
a reconfigurable system that retains the same ser-
vice level, as well as keeping the same system
topology after the occurrence of faults, is called
a strongly fault-tolerant [3] system. Hence the
reconfigured system can support the original task
partition and it can use faster deterministic routers
instead of slower adaptive ones. Figure 1 repre-
sents a strongly fault-tolerant design. Kwan and

0

2

1

Regular Node

Spare Node

Level

Figure 1: Optimal 1-fault-tolerant tree proposed by
Hayes

Toida [4] extended the approach to design an opti-
mal 2-fault-tolerant binary tree. To be able to tol-
erate more faulty nodes, other researchers [5, 6, 7]
have proposed schemes based on a covering tech-
nique where a nodeu is said to cover a nodev,
if node u replaces nodev when nodev becomes
faulty. Then, the node coveringu replacesu and
so on. The schemes require large number of spare
links. To reduce the number of required spare
links, some researchers [8, 9, 10, 11] have pro-

posed local reconfiguration schemes where a spare
node is assigned to each set of nodes. One faulty
node from each set is tolerated. A common draw-
back to the proposed schemes is the large number
of spare links required and low utilization of spare
nodes.

In this paper, we propose a global reconfigura-
tion scheme that utilizes circuit-switched commu-
nication to make thek-ary tree strongly fault toler-
ant. In our scheme, one spare node is assigned to
each group of regular nodes called a cluster (Fig-
ure 2); each spare node is connected to every reg-
ular node of its cluster via an intra-cluster spare
link. Furthermore, the spare nodes of neighbor-
ing clusters are interconnected using inter-cluster
spare links; two clusters are declared neighbors
if there exists at least one regular node in each
with a direct link between them. We call the re-
sulting topology theEnhanced Cluster K-ary Tree
(ECKT). Our approach differs from others in the
way we link the spare nodes to the faulty regular
nodes: we utilize the circuit-switched capabilities
of various spare nodes' communication modules
to construct edge-disjoint paths between multiple
faulty regular nodes of a cluster and multiple unas-
signed spare nodes in different clusters. We use
this property to show that our approach has a sig-
nificant higher fault-tolerance capability than other
approaches. Faulty links are bypassed by establish-
ing parallel paths using spare links.

The rest of the paper is organized as follows. In
the next section, notation and definitions that are
used throughout the paper are given. An overview
of our approach is presented in Section 3. In Sec-
tion 4, we examine the reconfigurability of the
ECKT. Both theoretical and simulation results are
presented. Finally, concluding remarks are dis-
cussed in Section 5.

2 Notation and Definitions

Each node of anl-levelk-ary tree is represented by
P (i; j) wherei is the level number andj is the in-
dex of the node in the leveli. Similarly, the spare
node j in the level i is denoted byS(i; j). The
link connecting any two nodesP andQ is repre-
sented byP ! Q. Finally, we define theconnec-

tion requirement (CR) of a spare node� in a clus-
ter with multiple faulty nodes, as the number of
edge-disjoint paths that must be constructed within
the spare network from� to other spare nodes in
the fault-free clusters, in order to tolerate the faulty
nodes.

3 Overview of the ECKT

An ECKT with l levels is constructed by assigning
one spare node to the regular nodes of each sub-
tree withlc levels. We call such a sub-tree a cluster.
The number of regular nodes in one cluster is then
klc�1
k�1

. The degree of a regular node at the root is
k + 1, at a leaf is2 and elsewhere isk + 2. The
network interconnecting the spare nodes (the spare
tree) is connected as aks-ary tree withls levels
whereks = k

lc andls = l

lc
. Hence, the number of

spare nodes isks
ls
�1

ks�1
and the number of spare links

within the spare tree isks
(ls�1)

�1
ks�1

ks. Figures 2(a)
and 2(b) depict 6-level 2-ary enhanced cluster trees
with lc = 3 and lc = 2 respectively. In the fig-
ure, the regular and the spare links are shown with
heavy and light lines respectively. A cluster in Fig-
ure 2 is highlighted with the dotted line. Note that
in Figure 2(a) the spare nodes are interconnected
as an 8-ary tree (ks = 23) with 2 levels (ls = 6

3
)

and in Figure 2(b) as a 4-ary tree with 3 levels.
We next describe how an ECKT tolerates faulty

nodes and faulty links. We assume that a given
faulty node retains its communication capability.
This is a common assumption since in today's dis-
tributed memory multiprocessors, the computation
and the communication modules of a node are sep-
arate. Furthermore, since the complexity of the
computation module is much greater than that of
the communication one, the probability of a failure
in the computation module is much higher. This as-
sumption may be avoided by duplicating the com-
munication module in each node.

To facilitate reconfiguration, the routing chan-
nels described below are used at each node. The
block diagrams of a regular node router and a spare
node router for an ECKT are depicted in Figure 3.
Each node consists of a computation module and
a communication module. The communication
module is made of several routing channels, and

Regular Node
Spare Node

Level

0

1

2

3

4

5

P(0,0)

P(1,0) P(1,1)

P(2,0) P(2,3)

P(3,0) P(3,7)

P(5,0) P(5,31)

S(0,0)

S(1
,0

) S(1,7)

(a)

Level

0

1

2

3

4

5

P(0,0)

P(1,0) P(1,1)

P(2,0)
P(2,1)

P(2,2) P(2,3)

P(3,0) P(3,7)

P(5,0) P(5,31)

S(0,0)

S(1,0) S(1,1) S(1,2) S(1,3)

S(2,3)

Regular Node

Spare Node

(b)

Figure 2: A 6-level enhanced cluster 2-ary tree
with a) lc = 2 b) lc = 3

each routing channel consists of achannel in and
a channel out. For example the routing channel 0
of the regular node depicted in Figure 3(a) is made
of Ch0 In and Ch0 Out. Each regular node router
consists ofr + 1 routing channels allowing it to
connect to one of itsr neighboring regular nodes
as well as its designated spare node. The connec-
tion to a neighboring regular node is provided via
ChX In and ChX Out channels, whereX = 0

for the parent node,X = 1 for the leftmost child
node,X = 2 for the next child node to the right
and so on. The connection to the designated spare
node is facilitated using Spare In and Spare Out
channels. Figure 3(b) illustrates the communica-
tion module of a spare node withn regular nodes
in its designated cluster andj neighboring spare

Bus Arbitor

Computation
 Module

Injection
Channel

Consumption
Channel

Spare In Spare Out

Ch0 In

Ch1 In

Ch0 Out

Ch1 Out

Ch(r−1) In Ch(r−1) Out

(r+2) X (r+2)

Switch

(a)

Bus Arbitor

Computation
 Module

Injection
Channel

Consumption
Channel

Node P(n−1) In

Switch

Node P0 In

Node P1 In Node P1 Out

Node P0 Out

Node P(n−1) Out

Spare Ch0 In

Spare Ch1 In

Spare Ch(j−1) In

Spare Ch0 Out

Spare Ch1 Out

Spare Ch(j−1) Out
(j+n+1)

X
(j+n+1)

(b)

Figure 3: Block diagram of a) Regular node
b) Spare node

nodes. The node routing channel PX (Node PX
In and Node PX Out) allows the spare node to be
connected to the regular nodeX within its cluster.
Similarly, connection to another neighboring spare
node is provided using the appropriate Spare ChX

In and Spare ChX Out.

Connecting a spare node to a regular node is
done to tolerate a node failure. If the spare node
resides in the cluster of the faulty node, the spare
routing channel (Spare In and Spare Out) of the
faulty node is connected to the appropriate node
routing channel of the spare node. For example
in Figure 2(a), if the node P(1; 1) becomes faulty,

the spare node S(0; 0) replaces it as illustrated in
Figure 4. The heavy lines in the figure represent
the permanent connections made after the recon-
figuration. Hence, the computation module of the
spare node replaces the computation module of the

X X

Spare In Spare Out

S(0,0)
Logical P(1,1)

P(1,1)

Node P2 In Node P2 Out

Figure 4: Spare node S(0,0) replacing faulty node
P(1,1)

faulty node. In addition, the new communication
module consists of the functional communication
module of the faulty node merged with the appro-
priate routine channel of the spare node. Due to the
circuit-switched capabilities of the communication
modules, the cost of communication is nearly con-
stant between any two given nodes. Therefore, re-
placing P(1; 1) with S(0; 0) has negligible effect in
the performance of the system.

If the assigned spare node and the faulty node
belong to different clusters, a dedicated path to
connect them needs to be established. Such a
path can be constructed by linking the appropriate
routing channels of the intermediate spare nodes.
For example in Figure 2(a), if the node P(2; 1)
is faulty and the spare S(0; 0) is not available,
the spare S(1; 1) can replace it by linking the ap-
propriate spare routing channels of S(0; 0) and
S(1; 1). Moreover, the proper node routing channel
of S(0; 0) is linked with the spare routing channel
of P(2; 1). The dedicated path then becomes an ex-
tension of the communication module of the faulty
node and the spare node functionally replaces the
faulty one. Furthermore, due to the capabilities of
the circuit-switched routing modules, the physical
location of the faulty node and its assigned spare
node becomes irrelevant.

There are three cases which may involve rout-
ing data through a faulty node. The first one is
when the message originates from the faulty node.
Here, its spare replacement sends its data via its
Injection Channel (Figure 3(b)) out to the appro-

priate Node PX Out channel. The message is then
routed to thecommunication module (CM) of the
faulty node via Spare In. Depending on the final
destination node, any of the channel outs may be
selected. The second case is when the destination
of the message is the faulty node. Once the data
reaches the CM of the faulty node, it is automat-
ically routed to the channel Spare Out instead of
the Consumption Channel. The spare node's CM
would consequently receive the message using the
appropriate channel (Node PX In). The message
is then sent to the computation module of the spare
node via the Consumption Channel. The third case
is when the faulty node is neither the source nor
the destination of the message but is used merely
as an intermediate switch connection. In this case,
the spare node is not involved at all, and routing
is done normally. Therefore, each spare node has
dual functions. One is to be the logical replace-
ment for a faulty node. The other is to be an in-
termediate switch connection. Both functions may
be active at the same time. Note that the connec-
tion of the spare node router to the active node(s) is
established during the reconfiguration and remains
intact thereafter.

Upon detecting a node failure, the spare node
within the respective cluster logically replaces the
faulty node. If the local spare node is not avail-
able, an available spare node from a different clus-
ter may be used. Every spare node consequently
activates its links to the active channels and dis-
ables the rest. The spare node's CM then forwards
messages bound for other spare nodes as well as
forwarding/receiving its data to/from other regular
nodes via the CM of the faulty node as discussed
above. Therefore, no modification to the avail-
able computation or communication algorithm is
needed.

The enhanced cluster approach can tolerate both
intra-cluster and inter-cluster link failures. This is
accomplished by utilizing the spare links to estab-
lish a parallel path to the faulty link. To tolerate
an intra-cluster link failure, using the spare links
and through the local spare node, a parallel path to
the faulty link is established. For example, in Fig-
ure 2(a), if the link P(3; 1) ! P(4; 2) is faulty, it
can be bypassed by the path P(3; 1) ! S(1; 1) !
P(4; 2) as specified below. The CM of S(1; 1) is

configured so that the node routing channel 0 and
the node routing channel 1 are interconnected. In
addition, regular nodes P(3; 1) and P(4; 2) logi-
cally replace their routing channels, which con-
nect them to the faulty link, with their spare rout-
ing channels. Consequently, all messages that are
bound for the faulty link are sent through the path
P(3; 1) ! S(1; 1) ! P(4; 2). To tolerate an inter-
cluster link failure, more than one spare node CM
is utilized. For example, in Figure 2(a), the path
P(2; 0) ! S(0; 0) ! S(1; 0) ! P(3; 0) can by-
pass the inter-cluster faulty link P(2; 0) !P(3; 0)
as specified below. The node P(3; 0) is connected
to the spare node S(1; 0) by linking P(3; 0)'s Spare
In and Spare Out to S(1; 0)'s Node P0 Out and
Node P0 In respectively. Similarly, the spare rout-
ing channel of the node P(2; 0) is connected to the
node P1 routing channel of the spare node S(1; 0).
Finally, the spare nodes S(0; 0) and S(1; 0) are
interconnected by linking their appropriate “spare
channel out”s and “spare channel in”s. Reconfigu-
ration fails if either of the two nodes at the end of a
faulty link is also faulty because the pertinent spare
link has to be used to tolerate both the faulty node
and the faulty link. The reconfiguration also fails
if two faulty links have a common regular node,
since the spare link that connects to the shared reg-
ular node has to be used in more than one dedicated
parallel path.
Example: Figure 5 illustrates the reconfiguration
of the ECKT in Figure 2(a) in the presence of
indicated faulty nodes and faulty links. For the
sake of clarity, non-active spare links are deleted
from Figure 5. As shown in the figure, spare
nodes S(0; 0), S(1; 1), S(1; 6), S(1; 7), S(1; 3),
S(1; 0), S(1; 2), S(1; 4) and S(1; 5) logically re-
place P(1; 1), P(2; 1), P(2; 3), P(3; 7), P(4; 8),
P(5; 2), P(5; 9), P(5; 19) and P(5; 20) respectively.
Also, intra-cluster faulty links P(3; 1) ! P(4; 2),
P(4; 4) ! P(5; 8), P(3; 3) ! P(4; 7) and inter-
cluster faulty link P(2; 0) ! P(3; 0) are bypassed
using parallel paths P(3; 1) ! S(1; 1) ! P(4; 2),
P(4; 4) ! S(1; 2)! P(5; 8), P(3; 3) ! S(1; 3) !
P(4; 7) and P(2; 0) ! S(0; 0)! S(1; 0) ! P(3; 0)
respectively.

Considering only the faulty nodes in Figure 5
and examining the cluster associated with the spare
S(0; 0), two out of three faulty nodes of the cluster

Regular Node

Spare Node

Level

0

1

2

3

4

5

P(0,0)

P(1,0) P(1,1)

P(2,0) P(2,3)

P(3,0) P(3,7)

P(5,0) P(5,31)

S(0,0)

S(1,0) S(1,7)

X

X

X

X

X
Faulty Node

Faulty Link

Figure 5: The ECKT in presence of faults

have to be assigned to available spare nodes from
other fault-free clusters via edge-disjoint paths
through the spare S(0; 0). Therefore, the CR (con-
nection requirement) of the spare S(0; 0) is said to
be 2. Note that, in general, the CR of a spare node
is equal to the number of faulty nodes that reside
within its cluster minus one.

4 Reconfigurability of the ECKT

We first examine reconfiguration in the presence
of only faulty nodes. Let's group the spare nodes
into three sets: SS (set of source nodes), SU (set
of used nodes), and ST (set of target nodes). A
source node is a spare node in a cluster with mul-
tiple faulty nodes. The set SS then represents the
spare nodes with a CR greater than0. ST is the
set of unassigned spare nodes, and SU consists of
spare nodes that have been assigned to faulty nodes
and have a CR of 0. For example, considering only
the faulty nodes in Figure 5, after assigning the lo-
cal spare node to a local faulty node in each faulty
cluster, SS = fS(0; 0)g, SU = fS(1; 0), S(1; 2),
S(1; 4), S(1; 5), S(1; 7)g, and ST = fS(1; 1),
S(1; 3), S(1; 6)g. During the reconfiguration algo-
rithm, which is discussed later in this section, the
spare nodes are dynamically assigned to the var-
ious sets. To illustrate this, suppose the CR of a
spare node� 2 SS is greater than 0 and there is a
dedicated path from� to � 2 ST . Consequently,
� replaces a faulty node in the cluster of� via the
dedicated path.� is then called used and is as-
signed to SU . Also, the CR of � is reduced by one.

If the CR of � becomes zero, it is also marked as
used and is assigned to SU . The ECKT is called
reconfigured when SS becomes an empty set.

From the previous section, it follows that the
reconfigurability of the ECKT is a function of
the number of dedicated and edge-disjoint paths,
within the spare tree, that can be established be-
tween the local spare nodes (nodes in SS) of the
clusters with multiple faulty nodes and the avail-
able spare nodes (nodes in ST) of the fault-free
clusters. However, spare nodes do not have to be
interconnected as a tree. Obviously, if the spare
nodes are interconnected as a complete graph, the
ECKT can tolerate up toks

ls
�1

ks�1
faulty nodes re-

gardless of fault distribution. Hence, the reconfig-
urability of the ECKT is a direct consequence of
the connectivity of the topology which intercon-
nects the spare nodes. Let's represent the topol-
ogy of the graph connecting the spare nodes by
G = (V;E), whereV =SS

S
SU
S

ST andE con-
sists of the appropriate spare links. Let the CR

of a noden 2 SS be represented by CR(n) and
denote the sum of the CR's of all nodes in a set
P as

P
n2PCR(n). Since the number of faulty

nodes can't exceed the number of spare nodes,
jST j �

P
n2SS

CR(n). The following theorem ex-
amines the connectivity ofG as it pertains to the
reconfigurability of the ECKT.

Theorem 1 Consider a graph G(V;E), where
V = SS

S
SU
S

ST . The necessary and sufficient
condition for every node n 2 SS to have CR(n)

edge-disjoint paths to CR(n) nodes in ST is that
the minimum number of edges leaving any sub-
set of nodes P � V be greater than or equal to
P

n2(P
T

SS)
CR(n)� jP

T
ST j.

Proof: We first prove the necessary condition:
if from every noden 2 SS, there exists CR(n)
edge-disjoint paths to CR(n) nodes in ST , then the
minimum number of edges leaving any subset of
nodesP � V must be greater than or equal to
P

n2(P
T

SS)
CR(n) � jP

T
ST j, which is the sum

of the CR's of SS nodes withinP minus the num-
ber of ST nodes inP . Let's consider a subsetP1 �

SS. Each of the edge-disjoint paths from a node in
SS to a node in ST must be carried over at least one
edge in the cutset (P1,V �P1). Therefore, the sum

of the CR's of the nodes inP1, which represents the
total required number of edge-disjoint paths from
the nodes inP1 to the nodes inST , must be smaller
than or equal to the number of edges in the cutset
(P1,V � P1). Now, let's consider a subsetP � V

and denote the graph interconnecting the nodes of
P asg. Obviously,g is a subgraph ofG. Within
g, there exists onlyjP

T
ST j target nodes. There-

fore, at most,jP
T

ST j of the edge-disjoint paths
may exist ing. The rest of the paths must then be
carried over the cutset(P; V � P). Therefore, the
necessary condition follows.

We next prove the sufficient condition: if the
minimum number of edges leaving any subset
of nodesP � V is greater than or equal to
P

n2(P
T

SS)
CR(n)�jP

T
ST j, every noden 2SS

would have CR(n) edge-disjoint paths to CR(n)
nodes in ST . Let's create a new graphG0 =

(V 0

; E
0) by adding two nodess andt toG as spec-

ified below and depicted by Figure 6. Each node in
ST is connected tot via a single edge. Each node
n 2 SS is connected tos via CR(n) parallel edges.
Let the sum of the CR of all nodes in SS be L. The
number of edge-disjoint paths betweens and t in
G0, according toMenger's theorem [12], is equal
to the size of the mincut inG0. We will show that
there always exists an(s; t) mincut in G0 whose
size is equal to L. The mincut inG0 may exist ats,
t, G, or some combination of them. By construc-
tion, the size of the cut ats equals L. Similarly,
the cutsize att is greater than or equal to L, since
jST j �

P
n2SS

CR(n) = L. Per the stated condi-
tion, for P = s

S
SS or P = s

S
SS
S

SU , the
cut (P; V 0 � P) must have a cutsize greater than

s t

S
S S

U
S

T

GL1

L3

2L

Figure 6: A cut in graph G0

or equal to L. Consider a general cut inG0 crossing
L1 of the edges connectings to SS nodes, L2 edges
of G, and L3 of the edges connecting ST nodes to
t (Figure 6). The number of ST nodes on the un-
shaded side of the cut is L3. The sum of the CR's
of SS nodes within the same side of the cut is L�

L1. Therefore, the stated condition can be formu-
lated as L2 � (L� L1)� L3 or L1+ L2+ L3 � L.
From this inequality, it follows that any cut inG0

has a cutsize greater than or equal to L. Therefore,
L is the size of the mincut. Hence, L edge-disjoint
paths exist between nodess and t. Then, each
of the s-t edge-disjoint paths must pass through a
unique node in ST because each node in ST is con-
nected tot via a single edge. Since there only ex-
ist L edges froms (one per path), the number of
edge-disjoint paths froms that passes through each
noden 2 SS is equal to CR(n). Therefore, each
noden 2 SS can make CR(n) edge-disjoint paths
to CR(n) distinct nodes in ST .

We next apply Theorem 1 to the spare tree and
examine the reconfigurability of the ECKT.

Theorem 2 The necessary condition for the ECKT
to reconfigure in the presence of faulty nodes is that
the number of faulty nodes in each sub-tree with li
levels (li = j � lc; j = 1; 2; � � �) be less than or

equal to k

li
lc
s �1
ks�1

+ 1.

Proof: Let's examine the ECKT by starting at the
leaf nodes and moving toward the root node. The
number of spare nodes of a sub-tree withli = j�lc

levels is k
j
s�1
ks�1

; two such sub-trees withli = lc

and li = 2lc are depicted in Figure 7, with dotted
lines around the smaller and larger subsets respec-
tively. Since only one additional inter-cluster spare
link exists that connects the sub-tree to an external
spare node, the maximum number of faulty nodes

that can be tolerated in the sub-tree isk
j
s�1
ks�1

+ 1.
Examining the cluster shown by the dotted line

in Figure 7, it is obvious that Theorem 1 is vio-
lated for a cluster with more than two faulty nodes;
the CR of the local spare node must be at most 1
since only one inter-cluster spare link is crossed.
Other examples of the ECKT will yield similar re-
sults. Therefore, under a fixed number of faulty
nodes per cluster, no theoretical lower bound on

Level

0

1

2

3

4

5

P(0,0)

P(1,0) P(1,1)

P(2,0)
P(2,1)

P(2,2) P(2,3)

P(3,0) P(3,7)

P(5,0) P(5,31)

S(0,0)

S(1,0) S(1,1) S(1,2) S(1,3)

S(2,3)

Regular Node

Spare Node

Figure 7: An ECKT withk = 2, l = 6 andlc = 3

the number of tolerated faulty nodes per cluster can
be established.

We next examine the simulation results based on
the following reconfiguration algorithm. An opti-
mal reconfiguration algorithm can be developed by
utilizing the maxflow/mincut algorithm. Here, op-
timality is measured as the ability to assign a spare
node to every faulty node whenever such an assign-
ment is feasible vis-a-vis Theorem 1. The main
drawback to a reconfiguration using the above al-
gorithm is that a digraph representation of the spare
network has to be constructed [11] and the spare
node assignment has to be done by the host pro-
cessor. To overcome these deficiencies, we next
present a near optimal reconfiguration algorithm
which is calledAlloc-Spare-ECKT. The algorithm
consists of three parts as specified below:
1. Early Abort: In this part, the solvability test
based on Theorem 2 is made to determine whether
reconfiguration is feasible.
2. Local Assignment: In this step, the local spare
node of every faulty cluster is assigned to a faulty
node within the cluster. If all faulty nodes are cov-
ered, the ECKT is reconfigured.
3. Non-Local Assignment: To find a set of can-
didate spare nodes that can be assigned to a faulty
node, we utilize Lee's path-finding algorithm [13].
The algorithm begins by constructing a breadth-
first search of minimum depthd (1 � d �

2(ls�1)) in the spare tree from the local spare node
of a faulty cluster with a non-zero CR. If a free
spare node is found, a path is formed to the source
node. The algorithm guarantees that a path to a
spare node will be found if one exits and the path

will be the shortest possible [13]. Therefore, all
faulty nodes that are one link away from available
spare nodes (at depth1) are assigned first. Once a
path is formed, the links associated with that path
are deleted from the spare tree, resulting in a new
structure. If there still remains some uncovered
faulty nodes, a solvability test to check the CR of
neighboring spare nodes, similar to Early Abort, is
performed on the new structure and Step3 is re-
peated for a higher depthd. Reconfiguration fails
if d > 2(ls � 1), which is the longest acyclic path
in the spare tree.

Alloc-Spare may be applied distributively. Step
1 can be performed by having each spare node
check its own node degree as dictated by Theo-
rem 2 and broadcast that information along with
its CR to its neighboring spare nodes. Each spare
node consequently checks for solvability based on
Theorem 1. Step 2 is done by the local spare node
of each faulty cluster. For Step 3, each spare node
with a non-zero CR makes a breadth-first search
within the spare tree to locate the unassigned spare
node(s).

We implemented algorithm Alloc-Spare-ECKT
for an enhanced cluster3-ary tree withl = 9 and
lc = 3. Hence, 757 spare nodes are interconnected
as a27-ary spare tree withls = 3. The simulation
result for up to400 randomly placed faulty nodes
is shown in Figure 8.1000 simulation runs were

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350

Number of Faulty Nodes

P
er

ce
nt

 R
ec

on
fig

ur
ed

Reconfigurability Under Random Fault Distribution

Cluster k-ary tree

Enhanced cluster k-ary tree

Tree dimension = 3

Number of levels in tree = 9

Number of levels in a cluster =3

Dimension of spare tree = 27

Number of spare nodes = 757

Figure 8: Tolerating faulty nodes only

performed for each given number of faulty nodes.
The other plot in the figure (labeled ask-ary clus-

ter tree) pertains to the result of the local recon-
figuration scheme [11, 14, 8, 10]. The result indi-
cates nearly100% reconfigurability for the ECKT
in the presence of about 30 faulty nodes and nearly
90% reconfigurability in the presence of nearly100
faulty nodes. The approaches in [5] and [7] per-
form slightly worse and slightly better than the lo-
cal reconfiguration scheme respectively. Finally,
the approach proposed in [4] only tolerates 2 faulty
nodes and the scheme in [6] tolerates a fixed num-
ber of faulty nodes at the expense of large node
degrees.

We next investigated the effect of node de-
gree and cluster size on the fault tolerance of the
ECKT. Our simulation results reveal that for a
given ECKT, the best reconfiguration is achieved
when the degree of the spare tree (ks = k

lc) and the
spare tree levels (ls = l

lc
) are kept to a minimum.

However, the former requireslc to be the minimum
and the latter needs it to be the maximum. Hence,
for a given ECKT,lc should be selected such that
there is a balance.

We next consider reconfiguration of the ECKT
under faulty links. No theoretical lower bounds on
the number of tolerated faulty links can be estab-
lished since more than one faulty link sharing a
regular node results in a failed reconfiguration. Our
reconfiguration algorithm utilizes unassigned spare
links to establish a parallel path to each faulty link.
We implemented the algorithm for an enhanced
cluster3-ary tree withl = 9 andlc = 3. The sim-
ulation result for up to200 randomly placed faulty
links is shown in Figure 9. The result indicates that
the given ECKT can tolerate nearly 20 faulty links
90% of the time.

By combining the reconfiguration algorithm,
which tolerates faulty nodes and faulty links, a
combination of faulty nodes and faulty links may
be tolerated. We assumed the probability of a link
failure to be the same as a node failure. After ran-
domly allocating the faulty elements, the algorithm
first tries to tolerate all faulty links. If successful, it
then uses Alloc-Spare-ECKT to tolerate the faulty
nodes. The simulation result for an enhanced clus-
ter 3-ary tree withl = 9 and lc = 3 is shown
in Figure 10. The result indicates that nearly 50
faulty elements are tolerated by the ECKT90% of
the time.

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100 120 140 160 180 200

Number of Faulty Links

P
er

ce
nt

 R
ec

on
fig

ur
ed

Reconfigurability Under Random Fault Distribution

Tree dimension = 3

Number of levels in tree = 9

Number of levels in a cluster =3

Dimension of spare tree = 27

Number of spare nodes = 757

Figure 9: Tolerating link failures only

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300 350 400

Number of Faulty Elements (Node and/or Link)

P
er

ce
nt

 R
ec

on
fig

ur
ed

Reconfigurability Under Random Fault Distribution

Tree dimension = 3

Number of levels in tree = 9

Number of levels in a cluster =3

Dimension of spare tree = 27

Number of spare nodes = 757

Figure 10: Tolerating faulty nodes and links

5 Conclusion

In this paper, we presented a strongly fault-tolerant
design for thek-ary tree multiprocessor and exam-
ined its reconfigurability. Our scheme is global
in the sense that any spare node can replace any
faulty node. However, our reconfiguration algo-
rithm can be implemented in a distributed manner.
By combining the reconfiguration algorithms for
faulty nodes and faulty links, combinations of node
and link failures are tolerated.

Our result indicates that no theoretical lower
bound on the number of tolerated faulty nodes or
faulty links can be established. However, our sim-
ulation results under random distribution of faulty

nodes and faulty links reveal that the ECKT can
tolerate relatively large number of faulty nodes and
faulty links. Compared to other proposed schemes,
the ECKT can tolerate significantly more faults for
the same overhead.

References

[1] C. Leiserson et. al.,The Network Architec-
ture of the Connection Machine CM-5. Cam-
bridge, MA: Thinking Machine Corporation,
1992.

[2] J. P. Hayes, “A graph model for fault-tolerant
computing systems,”IEEE Transactions on
Computers, vol. c-25, pp. 875–884, Septem-
ber 1976.

[3] N. Tzeng, “A cube-connected cycles architec-
ture with high reliability and improved per-
formance,” IEEE Transactions on Comput-
ers, vol. 42, no. 2, pp. 246–253, 1993.

[4] C. L. Kwan and S. Toida, “An optimal 2-
FT realization of binary symmetric hierarchi-
cal tree systems,”Networks, vol. 12, no. 12,
pp. 231–239, 1982.

[5] C. Raghavendra, A. Avizienis, and M. D.
Ercegovac, “Fault tolerance in binary tree ar-
chitectures,”IEEE Transactions on Comput-
ers, vol. c-33, pp. 568–572, June 1984.

[6] S. Dutt and J. Hayes, “On designing and
reconfiguring k-fault-tolerant tree architec-
tures,” IEEE Transactions on Computers,
vol. 39, pp. 490–503, April 1990.

[7] M. B. Lowrie and W. K. Fuchs, “Reconfig-
urable tree architecture using subtree oriented
fault tolerance,”IEEE Transactions on Com-
puters, vol. c-36, pp. 1172–1182, October
1987.

[8] A. S. Hassan and V. K. Agarwal, “A
fault-tolerant modular architecture for binary
trees,” IEEE Transactions on Computers,
vol. c-35, pp. 356–361, April 1986.

[9] A. D. Singh, “Interstitial redundancy: An
area efficient fault tolerance scheme for large
area VLSI processor arrays,”IEEE Transac-
tions on Computers, vol. 37, pp. 1398–1410,
November 1988.

[10] Y. Chen and S. J. Upadhyaya, “Reliability,
reconfiguration, and spare allocation issues
in binary-tree architectures based on multi-
ple -level redundancy,”IEEE Transactions on
Computers, vol. 42, pp. 713–723, June 1993.

[11] B. Izadi, “Design of fault-tolerant distributed
memory multiprocessors,”Ph.D. thesis, the
Ohio State University, 1995.

[12] C. J. Colbourn,The Combinatorics of Net-
work Reliability. Oxford University Press,
1987.

[13] C. Y. Lee, “An algorithm for path connection
and its applications,”IRE Transactions on
Electronic Computers, vol. ec-10, pp. 346–
365, 1961.

[14] A. D. Singh, “A reconfigurable modular fault
tolerant binary tree architecture,”Proceed-
ings of the IEEE International Symposium
on Fault Tolerant Computing, pp. 298–304,
1987.

