
Two-Stage Fault-Tolerant k-ary Tree Multiprocessors

Baback A. Izadi
Department of Electrical and Computer Engineering

State University of New York
75 South Manheim Blvd.

New Paltz, NY 12561 U.S.A.
bai@engr.newpaltz.edu

FüsunÖzgüner
Department of Electrical Engineering

The Ohio State University
2015 Neil Ave.

Columbus, OH 43210 U.S.A.
ozguner@ee.eng.ohio-state.edu

Abstract In this paper, we present a real-time fault-
tolerant design for an l-level k-ary tree multiprocessor
with two modes of operations and examine its reconfig-
urability. The k-ary tree is augmented by spare nodes
at stages one and two. We consider two modes of oper-
ations, one under heavy computation or hard deadline
and the other under light computation or soft deadline.
By utilizing the capabilities of wave-switching commu-
nication modules of the spare nodes, faulty nodes and
faulty links can be tolerated. Compared with other pro-
posed schemes, our approach can tolerate significantly
more faulty components with a low overhead and no
performance degradation.

Keywords: real time, fault tolerance,k�ary tree, aug-
mented multiprocessor, reconfiguration, wave switch-
ing

1 Introduction

The tree is a useful topology for networks of hier-
archical computing systems and has been used in
the design of multicomputers [9, 12, 13]. A dis-
advantage of this topology is that a single faulty
node or faulty link can disable the operation of the
entire tree. Hence, fault-tolerant trees have been
examined by a number of researchers where spare
nodes and spare links are used to replace the faulty
ones [6, 4, 7, 14, 3, 11].

In a real-time fault-tolerant system, faulty com-
ponents have to be replaced with spares in a man-
ner that also satisfies the required completion dead-
line. Two modes of operation is generally consid-
ered: thestrict mode and therelaxed mode. The

strict mode pertains to tasks whose computational
requirements are heavy or have a hard completion
deadline. The relaxed mode, on the other hand,
consists of tasks with a soft completion deadline
or a light computational load. A real-time fault-
tolerant system needs to replace faulty components
with spares in a manner that the required computa-
tional load and/or completion deadline are also sat-
isfied. Therefore, in the strict mode of operation,
in order to allow for fast reconfiguration, spare re-
placement of faulty components should result in
very few changes in the system interconnections.
A common approach to accommodate this mode of
operation is to replace each faulty component with
the local spare using a distributed reconfiguration
algorithm [10]. On the other hand, in the relaxed
mode of operation, a global reconfiguration algo-
rithm is applied to maximize the probability that
in the next strict mode of operation, there exists a
local spare for every faulty component.

In this paper, we present a two-stage redundant
scheme for thek-ary tree. The objectives of the
scheme are two fold. First, facilitate real-time fault
tolerance by allowing the system to operate in ei-
ther the strict mode or the relaxed mode. Second,
utilize the spare network to tolerate a large number
of faculty nodes and faulty links.

The rest of the paper is organized as follows. In
the next section, notation and definitions that are
used throughout the paper are given. An overview
of our approach is presented in Section 3. In Sec-
tion 4, we examine the reconfigurability of the
scheme. Both theoretical and simulation results
are presented. Finally, concluding remarks are dis-
cussed in Section 5.



2 Notation and Definitions

Each node of anl-level k-ary tree is represented
by P (i; j) wherei is the level number andj is the
index of the node in the leveli. Similarly, the spare
nodej in the leveli is denoted byS(i; j) at stage
one andSS(i; j) at stage two. The link connecting
any two nodesP andQ is represented byP !

Q. Finally, we define theconnection requirement
(CR) of a spare node� in a cluster with multiple
faulty nodes, as the number of edge-disjoint paths
that must be constructed within the spare network
from� to other unassigned spare nodes, in order to
tolerate the faulty nodes within the cluster.

3 Overview of the TECKT

In our scheme, at stage one, one spare node is
assigned to each group of regular nodes called a
cluster; each spare node is connected to every reg-
ular node of its cluster via an intra-cluster spare
link. Furthermore, the spare nodes of neighbor-
ing clusters are interconnected using inter-cluster
spare links; two clusters are declared neighbors if
there exists at least one regular node in each clus-
ter with a direct link between them. We call the re-
sulting topology theEnhanced Cluster K-ary Tree
(ECKT) [6]. At stage two, the process is repeated
by assigning one spare node to each sub-tree of the
spare tree of stage one. We call the overall struc-
ture theTwo-Stage Enhanced Cluster K-ary Tree
(TECKT). More specifically, a TECKT withl lev-
els is constructed by assigning one spare node to
the regular nodes of each sub-tree withlc1 levels
at stage one. Moreover, one spare node at stage
two is assigned to each sub-tree of spare nodes
of stage one withlc2 levels. The spare nodes at
stage one and stage two are then interconnected
as aks1 = klc1-ary tree with ls1 = l

lc1
levels

and ks2 = k(lc1�lc2)-ary tree withls2 = l

lc1�lc2

levels, respectively. Hence, the number of spare
nodes at stage one and stage two arekl�1

klc1�1
and

kl�1

k(lc1�lc2)�1
, respectively. Figure 1 depicts a two-

stage four-level two-ary enhanced cluster tree with
lc1 = lc2 = 2. In the figure, the regular links
are shown with heavy lines. The spare links at
stage one and stage two are shown with light and

dashed lines, respectively. A cluster at stage one in
the figure is highlighted with the dashed triangle.
Note that in Figure 1, the spare nodes at stage one
are interconnected as a four-ary tree (klc1 = 22)
with two levels (ls1 = 4

2
). At stage two, since

(ls2 = 4
2�2

= 1), there is only one spare node.

Level

0

1

2

3

P(0,0)

P(1,0) P(1,1)

P(2,0) P(2,1)
P(2,2) P(2,3)

P(3,0) P(3,7)

S(0,0)

S(1,0) S(1,1) S(1,2) S(1,3)

Regular Node

Spare Node Stage 2

Spare Node Stage 1

P(3,1) P(3,2) P(3,3) P(3,4) P(3,5) P(3,6)

SS(0,0)

Figure 1: A two-stage enhanced cluster two-ary
tree withl = 4 andlc1 = lc2 = 2

X X

Spare In Spare Out

S(0,0)
Logical P(1,1)

P(1,1)

Node P2 In Node P2 Out

Figure 2: Spare node S(0,0) replacing faulty node
P(1,1)

We next describe how a two-level enhanced
cluster k-ary tree tolerates faulty nodes and faulty
links. Each node is made of a computation mod-
ule and a wave-switching communication module
[2]. Wave-switching implements circuit-switching
and wormhole-switching concurrently; permanent
connections and long messages use the circuit-
switched segment while short messages are trans-
mitted using the wormhole-switching. We assume
that faulty nodes retain their ability to communi-
cation. This is a common assumption since the
hardware complexity of the communication mod-
ule is much lower than the computational module.
Therefore, the probability of failure in the commu-
nication module is much lower than the compu-
tation module. This assumption may be avoided
by duplicating the communication module in each
node.



To tolerate a faulty node, the computation mod-
ule of the spare node logically replaces the com-
putation module of the faulty node. In addition,
if the spare node resides in the cluster of faulty
node, the new communication module consists of
the functional communication module of the faulty
node merged with the appropriate routine channel
of the local spare node. Figure 2 illustrates how lo-
cal spare node S(0,0) replaces faulty node P(1,1).
The heavy lines in Figure 2 represent effective per-
manent connections after the reconfiguration; the
permanent connections are established by utilizing
the circuit-switched virtual channels of the com-
munication modules. If the assigned spare node
and the faulty node belong to different clusters,
a dedicated path is constructed by linking the ap-
propriate circuit-switched routing channels of the
intermediate spare nodes. For example, in Fig-
ure 1, if the node P(1; 1) is faulty and the spare
S(0; 0) is not available, the spare S(1; 1) can re-
place it by linking the appropriate circuit-switched
routing channels of P(1; 1), S(0; 0), and S(1; 1).
The dedicated path then becomes an extension of
the communication module of the faulty node and
the spare node functionally replaces the faulty one.
Furthermore, due to the capabilities of the circuit-
switched routing modules, the physical location of
the faulty node and its assigned spare node be-
comes irrelevant. The TECKT can tolerate both
intra-cluster and inter-cluster link failures. This
is accomplished by logically replacing the routing
channel that connects the processor to a faulty link
with the circuit-switched routing channel that con-
nects it to a spare link, and hence utilizing the spare
links to establish a parallel path to the faulty link
and bypassing it.
Example: Figure 3 illustrates the reconfiguration
of the TECKT in Figure 1 in the presence of indi-
cated faulty nodes and faulty links. For the sake of
clarity, non-active spare links are deleted from Fig-
ure 3. As shown in the figure, spare nodes S(0; 0),
S(1; 0), S(1; 1), S(1; 2), S(1; 3), and SS(0; 0) logi-
cally replace faulty nodes P(3; 0), P(2; 0), P(3; 2),
P(3; 1), P(3; 7), and P(2; 1), respectively. Also,
faulty links P(1; 0) ! P(0; 0), P(2; 2) ! P(3; 5),
and P(1; 1) ! P(2; 3) are bypassed using paral-
lel paths P(0; 0) ! S(0; 0) ! P(1; 0), P(2; 2) !
S(1; 2) ! P(3; 5), and P(2; 3) ! S(1; 3) !

S(0; 0)! P(1; 1), respectively.

Level

0

1

2

3

P(0,0)

P(1,0) P(1,1)

P(2,0) P(2,1)
P(2,2) P(2,3)

P(3,0) P(3,7)

S(0,0)

S(1,0) S(1,1) S(1,2) S(1,3)

Regular Node

Spare Node Stage 2

Spare Node Stage 1

P(3,1) P(3,2) P(3,3) P(3,4) P(3,5) P(3,6)

SS(0,0)

X

X

XX
Faulty Node

Faulty Link

Figure 3: The TECKT in presence of faults

Considering only the faulty nodes in Figure 3
and examining the cluster associated with the spare
node S(1; 0), two out of three faulty nodes of the
cluster have to be assigned to available spare nodes
from other fault-free clusters via edge-disjoint
paths through the spare node S(1; 0). There-
fore, the CR (connection requirement) of the spare
S(1; 0) is said to be two.

4 Reconfigurability of the TECKT

To allow for fast reconfiguration in the strict mode
of operation, the reconfiguration algorithm should
result in minimum changes in system interconnec-
tions. Hence, under strict mode of operation, each
faulty node of a cluster is replaced by the local
spare node at stage one. The algorithm is ap-
plied distributively, allowing each spare node at
stage one to monitor the status of the regular nodes
within its cluster, and replace the faculty node as
outlined in the previous section. The reconfigura-
tion algorithm under the strict mode of operation
fails if more than one node becomes faculty in a
cluster.

The reconfiguration algorithm in the relaxed
mode of operation assigns each detected faulty
node to a spare node at stage two so that every
healthy regular node would have an available spare
node at stage one in its local cluster for possible re-
configuration in the next strict mode of operation.
For example, in Figure 1, in the relaxed mode of
operation, the task of faulty node P(2,1) is assigned
to the spare nodeSS(0; 0) while in the strict mode
of operation, it would be assigned to the local spare



node, S(1,1). Under relaxed mode of operation, if
there is no unassigned spare node at stage two, a
spare node from stage one is assigned to the faulty
node; details of reconfiguration algorithm under
the relaxed mode of operation is discussed later in
this section. We next establish theoretical and sim-
ulation results pertaining to the relaxed mode of
operation.

Let us group the spare nodes into three sets: SS

(set of source nodes), SU (set of used nodes), and
ST (set of target nodes). A source node is a spare
node at stage one in a cluster with multiple faulty
nodes. The set SS then represents the spare nodes
with a CR greater than0. ST is the set of unas-
signed spare nodes, and SU consists of spare nodes
that have been assigned to faulty nodes. For exam-
ple, considering only the faulty nodes in Figure 3,
after assigning faulty node P(2; 1) to spare node
SS(0; 0) and the local spare node of each faulty
cluster to a local faulty node, SS = fS(1; 0)g,
SU = fS(1; 1), S(1; 3), SS(0; 0)g, and ST =

fS(0; 0), S(1; 2)g. During the reconfiguration al-
gorithm, the spare nodes are dynamically assigned
to the various sets. To illustrate this, suppose the
CR of a spare node� 2 SS is greater than 0, and
there is a dedicated path from� to � 2 ST . Con-
sequently,� replaces a faulty node in the cluster
of � via the dedicated path.� is then called used
and is assigned to SU . Also, the CR of � is re-
duced by one. If the CR of � becomes zero, it is
also marked as used and is assigned to SU . The
TECKT is called reconfigured when SS becomes
an empty set.

From the previous section, it follows that the re-
configurability of the TECKT, under the relaxed
mode of operation, is a function of the number
of dedicated and edge-disjoint paths, within the
spare trees at stages one and two, that can be es-
tablished between the local spare nodes (nodes in
SS) of the clusters with multiple faulty nodes and
the available spare nodes (nodes in ST ). Obvi-
ously, if the spare nodes are interconnected as a
complete graph, the TECKT can tolerate up to
(ks1)

ls1�1
ks1�1

+ (ks2)
ls2�1

ks2�1
faulty nodes regardless of

fault distribution. Hence, the reconfigurability of
the TECKT is a direct consequence of the connec-
tivity of the topology that interconnects the spare

nodes. Let us represent the topology of the graph
connecting the spare nodes byG = (V;E), where
V =SS

S
SU
S

ST andE consists of the appropriate
spare links. Let the CR of a noden 2 SS be rep-
resented by CR(n), and let us denote the sum of
the CR's of all nodes in a setP as

P
n2P

CR(n).
Since the number of faulty nodes cannot exceed
the number of spare nodes,jST j �

P
n2SS

CR(n).
The following theorem examines the connectivity
of G as it pertains to the reconfigurability of the
TECKT.

Theorem 1 Consider a graph G(V;E), where
V = SS

S
SU
S

ST . The necessary and sufficient
condition for every node n 2 SS to have CR(n)

edge-disjoint paths to CR(n) nodes in ST is that
the minimum number of edges leaving any sub-
set of nodes P � V be greater than or equal to
P

n2(P
T

SS)
CR(n)� jP

T
ST j.

Proof: We first prove the necessary condition:
if from every noden 2 SS, there exists CR(n)
edge-disjoint paths to CR(n) nodes in ST , then the
minimum number of edges leaving any subset of
nodesP � V must be greater than or equal to
P

n2(P
T

SS)
CR(n) � jP

T
ST j, which is the sum

of the CR's of SS nodes withinP minus the num-
ber of ST nodes inP . Let us consider a subset
P1 � SS . Each of the edge-disjoint paths from a
node in SS to a node in ST must be carried over at
least one edge in the cutset (P1,V �P1). Therefore,
the sum of the CR's of the nodes inP1, which rep-
resents the total required number of edge-disjoint
paths from the nodes inP1 to the nodes inST , must
be smaller than or equal to the number of edges in
the cutset (P1,V �P1). Now, let us consider a sub-
setP � V and denote the graph interconnecting
the nodes ofP asg. Obviously,g is a subgraph
of G. Within g, there exists onlyjP

T
ST j target

nodes. Therefore, at mostjP
T

ST j of the edge-
disjoint paths may exist ing. The rest of the paths
must then be carried over the cutset(P; V � P ).
Therefore, the necessary condition follows.

We next prove the sufficient condition: if the
minimum number of edges leaving any subset
of nodesP � V is greater than or equal to
P

n2(P
T

SS)
CR(n)�jP

T
ST j, every noden 2SS

would have CR(n) edge-disjoint paths to CR(n)



nodes in ST . Let us create a new graphG0 =

(V 0; E0) by adding two nodess andt toG as spec-
ified below and depicted by Figure 4. Each node
in ST is connected tot via a single edge. Each
noden 2 SS is connected tos via CR(n) parallel
edges. Let the sum of the CR of all nodes in SS
be L. The number of edge-disjoint paths between
s andt in G0, according to Menger's theorem [1],
is equal to the size of the mincut inG0. We will
show that there always exists an(s; t) mincut inG0

whose size is equal to L. The mincut inG0 may
exist ats, t, G, or some combination of them. By
construction, the size of the cut ats equals L. Sim-
ilarly, the cutsize att is greater than or equal to L
sincejST j �

P
n2SS

CR(n) = L. Per stated con-
dition, for P = s

S
SS or P = s

S
SS
S

SU , the

s t

S
S S

U
S

T

GL1

L3

2L

Figure 4: A cut in graph G0

cut (P; V 0 � P ) must have a cutsize greater than
or equal to L. Consider a general cut inG0 crossing
L1 of the edges connectings to SS nodes, L2 edges
of G, and L3 of the edges connecting ST nodes to
t (Figure 4). The number of ST nodes on the un-
shaded side of the cut is L3. The sum of the CR's
of SS nodes within the same side of the cut is L�

L1. Therefore, the stated condition can be formu-
lated as L2 � (L� L1)� L3 or L1+ L2+ L3 � L.
From this inequality, it follows that any cut inG0

has a cutsize greater than or equal to L. Therefore,
L is the size of the mincut. Hence, there exist L
edge-disjoint paths between nodess and t. Each
of theses-t edge-disjoint paths must pass through
a unique node in ST because each node in ST is
connected tot via a single edge. Since there only
exists L edges froms (one per path), the number
of edge-disjoint paths froms that passes through

each noden 2 SS is equal to CR(n). Therefore,
each noden 2 SS can make CR(n) edge-disjoint
paths to CR(n) distinct nodes in ST .

We next establish a necessary condition for the
reconfigurability of the TECKT based on Theo-
rem 1.

Theorem 2 The necessary condition for the
TECKT to reconfigure in the presence of faulty
nodes is that the number of faulty nodes in each
sub-tree with li levels (li = j � lc1 � lc2; j =

1; 2; � � �) be less than or equal to (ks1)
(
li

lc1
)
�1

ks1�1
+

(ks2)
(

li

lc1�lc2
)
�1

ks2�1
+ 2.

Proof: Let us examine the spare trees of the
TECKT at stage one and stage two, starting at the
leaf nodes and moving toward the root node. The
number of spare nodes at stage one and stage two
of a sub-tree of the TECKT withli = j � lc1 � lc2

levels are(ks1)
(j�lc2)�1
ks1�1

and (ks2)
j
�1

ks2�1
, respectively.

Two such spare sub-trees withks1 = 2, ks2 = 4,
and lc2 = 2 are depicted in Figure 5 forj = 1

and j = 2, with dotted lines around the smaller

Level

0

1

2

3

4

5

S(0,0)

S(1,0) S(1,1)

S(2,0)
S(2,1) S(2,2) S(2,3)

S(5,0) S(5,31)

SS(0,0)

SS(1,0) SS(1,3)

SS
(2

,0
)

SS(2,15)

Spare node at stage 1

Spare node at stage 2

Figure 5: A spare tree at stages one and two

and larger subsets, respectively. Since only two ad-
ditional inter-cluster spare link exists that connect
the sub-tree to external spare nodes, the maximum
number of faulty nodes that can be tolerated in the

sub-tree is(ks1)
(j�lc2)�1
ks1�1

+ (ks2)
j
�1

ks2�1
+ 2.

Examining the cluster shown in Figure 5, it is
obvious that Theorem 1 is violated for a cluster
with more than three faulty nodes; the CR of the
local spare node must be at most two since only



two inter-cluster spare links are crossed. Other ex-
amples of the TECKT will yield similar results.
Therefore, under a fixed number of faulty nodes
per cluster, no theoretical lower bound on the num-
ber of tolerated faulty nodes per cluster can be es-
tablished.

We next examine the simulation results based
on the following reconfiguration algorithm. An
optimal reconfiguration algorithm can be devel-
oped by utilizing the maxflow/mincut algorithm.
Here, optimality is measured as the ability to as-
sign a spare node to every faulty node whenever
such an assignment is feasible vis-a-vis Theorem 1.
The main drawback to a reconfiguration using the
above algorithm is that a digraph representation of
the spare network has to be constructed [5] and
the spare node assignment has to be done by the
host processor. To overcome these deficiencies,
we next present a near-optimal reconfiguration al-
gorithm, which is calledAlloc-Spare-TECKT. The
algorithm consists of four parts as specified below:
1. Early Abort: The solvability test based on The-
orem 2 is made to determine whether the reconfig-
uration is feasible.
2. Assignment at Stage Two: We utilize Lee's
path-finding algorithm [8] to find a set of candi-
date spare nodes at stage two that can be assigned
to the faulty node. The algorithm begins by con-
structing a breadth-first search of minimum depth
d (1 � d � 2(ls2 � 1)) in the spare tree of stage
two from the local spare node of a faulty cluster.
If a free spare node is found, a path is formed to
the faulty node. The algorithm guarantees that a
path to a spare node will be found if one exits and
the path will be the shortest possible [8]. Once
a path is formed, the links associated with that
path are deleted from the spare tree, resulting in a
new structure. If there still remain some uncovered
faulty nodes, a solvability test based on Theorem 2
is performed on the new structure, and this step is
repeated for a higher depthd in stage two of the
spare tree.
3. Local Assignment: if all spare nodes at stage
two are assigned and there still remain some faulty
nodes, the local spare node of every faulty cluster
is assigned to a faulty node within the cluster.
4. Assignment at Stage One: If there remain ad-
ditional faulty nodes, we apply Lee's path-finding

algorithm to both stages one and two from the lo-
cal spare node of a faulty cluster with an unas-
signed faulty node. Reconfiguration fails ifd >

2(ls1 + ls2 � 1), which is the longest acyclic path
in the spare tree.

We simulated the reconfigurability of a 9-level
3-ary tree withlc1 = lc2 = 3. The simulation
results for the cluster approach [5] (a local recon-
figuration scheme), the enhanced cluster approach
[6], and the two-stage enhanced cluster approach
are shown in Figure 6. The result suggests that
the TECKT, under the relaxed mode of operation,
can tolerated nearly 200 faulty nodes90% of the
time. Hence, the two-stage approach improves
the reconfigurability of the given tree by almost a
factor of two over the enhanced cluster approach
and a factor of four over the local reconfiguration
scheme.The approaches in [14] and [11] perform
slightly worse and slightly better than the local re-
configuration scheme respectively. Finally, the ap-
proach proposed in [7] only tolerates two faulty
nodes and the scheme in [3] tolerates a fixed num-
ber of faulty nodes at the expense of large node
degrees.

0

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600

Number of Faulty Nodes

P
er

ce
nt

 R
ec

on
fig

ur
ed

Reconfigurability Under Random Fault Distribution

Cluster tree
LC=3
SN=757

Enhanced cluster tree
LC=3

SN=757

2-Stage enhanced cluster tree
LC=3,3

SN=758

Tree dimension = 3

Number of levels in tree=9

LC=Number of levels in a cluster

SN=Number of spares

Figure 6: Reconfiguration of a tree under random
fault distribution

In the presence of faulty links, no theoretical
lower bounds on the number of tolerated faulty
links can be established, since more than one faulty
link sharing a regular node results in a failed re-
configuration. For example, in Figure 1, if links
P(1; 0) ! P(0; 0) and P(0; 0) ! P(1; 1), are
faulty, the spare link P(0; 0) ! S(0; 0) has to be



used by both of them, which is not possible. Hence
only a simulation result may be attained. Also,
since each intra-cluster link failure can only be re-
placed by one spare link parallel path, no distinc-
tion between the strict mode and relaxed mode can
be made. The additional spare links at the sec-
ond stage does, however, improve the ability of
the TECKT to tolerate more faulty links, compared
with the ECKT [6].

5 Conclusion

In this paper, we proposed a scheme to allow a
tree based multiprocessor tolerate faulty nodes in
real time. During the strict mode of operation,
the scheme uses local reconfiguration, which is
the fastest and involves the fewest switch changes.
Then, in the next relaxed mode of operation the
tasks of local spare nodes, at stage one, are trans-
ferred to the spare nodes at the second stage by ap-
plying a global reconfiguration scheme. If a node
becomes faulty during the relaxed mode of oper-
ation, the scheme tries to assign a spare node at
stage two to replace it. This is done to maximize
the probability that in the next strict mode of oper-
ation local spare nodes may be available to replace
potential faulty nodes.

Our result indicates that no theoretical lower
bound on the number of tolerated faulty nodes or
faulty links can be established. However, our sim-
ulation results in the relaxed mode of operation
and under random distribution of faulty nodes re-
veal that the TECKT can tolerate a relatively large
number of faulty nodes. Compared to other pro-
posed schemes, the TECKT can tolerate signifi-
cantly more faults for the similar overhead.

References

[1] C. J. Colbourn. The Combinatorics of Network
Reliability. Oxford University Press, 1987.

[2] J. Duato, P. Lopez, and S. Yalamanchili.
Deadlock- and livelock-free routing protocols for
wave switching. InProceedings of the 11th In-
ternational Parallel Processing Symposium, pp.
570–577, April 1997.

[3] S. Dutt and J. Hayes. On designing and
reconfiguring k-fault-tolerant tree architectures.

IEEE Transactions on Computers, 39(4):490–
503, April 1990.

[4] J. P. Hayes. A graph model for fault-tolerant com-
puting systems.IEEE Transactions on Comput-
ers, c-25(9):875–884, September 1976.

[5] B. Izadi. Design of fault-tolerant distributed
memory multiprocessors.Ph.D. thesis, the Ohio
State University, 1995.

[6] B. Izadi and F. Özgüner. Reconfiguration in
a circuit-switched k-ary tree multiprocessor. In
Proceedings of the International Conference on
Parallel and Distributed Processing Techniques
and Applications (PDPTA'97), pp. 1658–1667,
June 1997.

[7] C. L. Kwan and S. Toida. An optimal 2-FT real-
ization of binary symmetric hierarchical tree sys-
tems.Networks, 12(12):231–239, 1982.

[8] C. Y. Lee. An algorithm for path connection and
its applications.IRE Transactions on Electronic
Computers, ec-10:346–365, 1961.

[9] C. Leiserson et. al. The network architecture of
the connection machine cm-5. InProceedings
of the 4th Annual ACM Symposium on Parallel
Alogrithms and Architectures, pp. 272–285, June
1992.

[10] R. Libeskind-Hadas, N. Shrivastava, R. Melhem,
and C. Liu. Optimal reconfiguration algorithms
for real-time fault-tolerant processor arrays.IEEE
Transactions on Parallel and Distributed Systems,
6:498–510, May 1995.

[11] M. B. Lowrie and W. K. Fuchs. Reconfigurable
tree architecture using subtree oriented fault tol-
erance. IEEE Transactions on Computers, c-
36(10):1172–1182, October 1987.

[12] Meiko World Incorporated.Computing Surface 2
Reference Manuals. Preliminary Edition, 1993.

[13] H. L. Muller, P. W. Stallard, and D. H. Warren.
An evaluation study of a link-based data diffu-
sion machine. InProceedings of the 8th Interna-
tional Parallel Processing Symposium, pp. 115–
128, April 1994.

[14] C. Raghavendra, A. Avizienis, and M. D. Ercego-
vac. Fault tolerance in binary tree architectures.
IEEE Transactions on Computers, c-33(6):568–
572, June 1984.


