
Fault Tolerance in Hypercubes

Shobana Balakrishnan, F¨usunÖzgüner, and Baback A. Izadi

Department of Electrical Engineering, The Ohio State University, Columbus, OH 43210, USA

Abstract: This paper describes different schemes for tolerating faults in hypercube multi-

processors. A study of hypercube algorithms reveals that in many cases, the computations that

require local communication are mapped onto topologies such as meshes or rings and the hyper-

cube topology is used for global data communication. Therefore, a faulty hypercube needs to be

reconfigured to perform both local and global communication as required by the algorithm, ef-

fectively and with minimal performance degradation. Two general approaches can be identified.

The first approach looks into ways of utilizing the healthy processors and links of a hypercube

with faulty nodes/links, for embedding topologies such as lower dimensional hypercubes, rings,

meshes and trees for performing communication. The second approach makes use of hardware

redundancy in the form of spare nodes and/or links and usually requires modifications in the

communication hardware. Augmented hypercubes and spare allocation schemes are described.

Keywords: Hypercube, fault tolerance, embeddings, global communication, spare alloca-

tion, reconfiguration

1 Introduction

The area of reconfigurability in the presence of faults is becoming increasingly important with

the emergence of massively parallel architectures. Therefore, fault tolerance is an important

issue that needs to be addressed in the design of node architectures, communication hardware

and software design as well as parallel algorithm development. Ad–dimensional hypercube

multicomputer consists ofn = 2
d processors (nodes) interconnected as a Booleand-cube, with

each processor having only local memory. Inter–processor communication is done by explicit

message passing.

Each processor in ad–cube can be represented by ad–tuple(bd�1 � � � bi � � � b0) wherebi 2

f0; 1g, and a subcube in ad-cube can be represented by ad–tuplef0; 1; xgd: Coordinate values

“0” and “1” can be referred to asboundcoordinates and “x” asfree. A (d � k)–dimensional

subcube ((d � k)–subcube) in ad–cube is represented by ad–tuplewith k boundcoordinates

andd-k freecoordinates.

Two general approaches can be identified for fault tolerance in hypercube multiprocessors.

The first approach looks into ways of utilizing the healthy processors and links of a hypercube

with faulty nodes/links, to identify embedded topologies such as lower dimensional hypercubes

(subcubes), meshes, etc. required by the computations. With this approach, some performance

degradation is expected, however special hardware design for fault tolerance is not necessary.

Embeddings are discussed in Section 2 and an algorithm for finding fault-free subcubes is de-

scribed in Section 3.

A distributed fault diagnosis algorithm for identifying the set of faulty processors and links,

when the number of faulty processors and linksr � d is given in [1]. Once the faulty elements

are identified, the multiprocessor and the distributed algorithm running on the multiprocessor[2]

must be reconfigured to run on the available processors. A faulty hypercube needs to be recon-

figured to perform both local and global communication as required by the algorithm, effec-

tively and with minimal performance degradation. A study of hypercube algorithms reveals

that in many cases, the computations that require local communication are mapped onto topolo-

gies such as meshes or rings (grid problems for example [3]) and the hypercube topology is used

for global data communication. Therefore, both local and global communication schemes must

be considered in designing algorithms for faulty hypercubes. The problem of communication in

a faulty hypercube has been addressed by many researchers. A survey of some of these schemes

as well as new results will be presented in Section 4.

The second approach to fault tolerance makes use of hardware redundancy in the form of

spare nodes and/or links and usually requires modifications in the communication hardware.

Although ad-dimensional hypercube with faulty nodes still contains a number of lower dimen-

sional subcubes and therefore can be used to run hypercube algorithms without any modification

[4, 5, 6, 7], one faulty node reduces the dimension of the largest fault-free subcube to(d � 1)

and 2 faulty nodes can reduce it to(d� 2). This has motivated researchers to investigate hard-

ware redundancy and spare allocation schemes [8, 9, 10, 7, 11, 12, 13, 14, 15]. Augmented

hypercubes and spare allocation schemes will be described in Section 5.

2 Embeddings

Embedding problems are concerned with finding mappings between two graphs that preserve

certain topological properties. LetGa = (Va; Ea) be an application graph andGh = (Vh; Eh)

be the host graph that represents the interconnection topology of the parallel computer. An

embedding� of a graphGa into a graphGh is a function fromVa toVh [16]. � is an isomorphic

embeddingiff Ga � Gh and for allu; v 2 Va; da(u; v) = dh(�(u); �(v)) whered(u; v) is the

distance between verticesu andv. Thedilation of � is Max(d(�(u); �(v))) for all u; v 2 Va.

Note that an isomorphic embedding is a unit dilation embedding.

Previous research has shown that a number of useful graphs can be embedded isomorphi-

cally into healthy hypercubes. A graphG is cubical if there exists an isomorphic embedding

of G in thed-cube graph. The focus of the research has been to determine the largest size of

the graphG that can be embedded in ad-cube. For example, in [17] and [18] it is shown that

trees are cubical, and that a(d � 1)–height tree can be embedded in ad-cube isomorphically.

In cases where adjacency cannot always be preserved, embeddings of dilation greater than one

have been determined [19, 20, 21, 22].

In this section, we present an overview of algorithms for embedding trees, rings and meshes

in faulty hypercubes. We discuss embeddings that handle node failures only, unless otherwise

stated. The direction of the research in fault–tolerant embeddings has followed two different

paths depending on the motivating problem.

The first approach [19, 20] is to find embedding functions that primarily minimize the cost

of reconfiguration;i.e., the number of node state changes during reconfiguration is minimized.

Generally, such research has focused on distributed algorithms so that the neighbors of the faulty

node can detect the faulty node and locally decide how to remap the faulty node to a healthy

node with minimum reconfiguration cost. Remapping in this way may not always preserve

adjacency, thus increasing the communication cost. Furthermore, the number of nodes utilized

in the embedding is not always maximized. Such algorithms also do not maximize the number

of faults that can be tolerated and exist for single or double fault cases only.

The second direction taken by researchers [23, 24] in fault–tolerant embeddings has been

to preserve the adjacency of nodes;i.e., produce an isomorphic embedding. Hence, for unit

dilation embeddings, the focus has been to determine the maximum size of the embedding so

that fewest number of healthy nodes are wasted (unused). Bounds on the maximum number of

faults that can be tolerated are also obtained.

2.1 Rings

In this section we review the approaches taken in [20] and [23]. We elaborate on the idea used

in [23] since it handles multiple faults and creates the fault–tolerant embedding at run time in a

distributed manner.

The key idea in [20] is to embed the ring so that unused (healthy) nodes are close to all

nodes in the embedding, whereby, an unused node can replace a faulty node in the embedding

easily with a few reconfiguration steps. Fig. 1 (dark lines) illustrates a ring of length eight

embedded in a4-cube. In general, the algorithm utilizes a small percentage of the nodes where

the maximum is50%. It can be seen from Fig. 1 that such an embedding can tolerate two

faults and the reconfiguration algorithm requires two state changesi.e., nodes1010 and1000

are added in place of the faulty nodes0000 and0001 respectively.

Embedding a ring in ad-cube so that the size of the ring is maximized is the approach taken

0110

0000

0010

0001

0011

0101

1110

1100

1000

1010

1111

1101

1001

1011

Original Embedded Ring

Reconfigured Ring

State Changes

Faulty nodes

Spares used in fault
tolerant embedding

0111

Dim0

Dim1
Dim2

Dim3

0100

Figure 1: Ring embedding minimizing reconfiguration cost

by [23]. The authors devise a distributed algorithm that embeds a ring of size2
d
�2f in ad-cube

where the number of faultsf � b
d+1
2
c. They use cyclic Gray codes to embed the ring as is done

in healthy hypercubes [18] and vary thisbasis ringto skip over the faulty nodes. Fig. 2 shows

a 4-cube with the basis ring embedded (shown by tracing the number in the angle bracketsi.e.,

<> starting at node0000). The embedding dimension sequence for the basis ring in a4-cube

denoted asDM0 = f0; 1; 2; 3g is (0; 1; 0; 2; 0; 1; 0; 3; 0; 1; 0; 2; 0; 1; 0; 3) where following this

dimension sequence from the source node results in the basis ring. Let us also denote therank

of the processor as the location of the processor in the embedded basis ring. The number in the

angle bracket in Fig. 2 represents the rank of the processor. For example, the source has rank1,

and for the embedding sequencef0; 1; 2; 3g the neighbor of the source along dimension0 has

rank 2 while the neighbor of the source along dimension3 has rank16. The first dimension

in DM0 is the alternating dimension (i.e., the dimension traversed most frequently), and is

denoted asdf (df = 0 in this example). When a faulty node is encountered along the embedded

ring, the algorithm in [23] executes one of the following two cases. In the first case, if the

dimension along which the faulty node is reached is the most frequently occurring dimension

df (i.e., dimension0 in the example), then the dimension sub-sequence[df ; d
0; df] is replaced

by [d0
] whered0

6= df . For example, as in Fig. 2 (a), if node0111 is faulty, then at node0110

(which is the fifth processor in the ring) the next dimension along the embedding sequence is

changed from0 to 1 i.e., the dimension sub-sequence[0; 1; 0] is replaced by[1]. In the second

case, if the dimension along which the faulty processor is reached is not dimensiondf but some

other dimensiond0, then the dimension sub-sequence[df ; d
0; df] is replaced byd0, i.e., the ring

0110

0000

0010

0001

0011

0101

1110

1100

1000

1010

1111

1101

1001

1011

<1> <2>

<3><4>

<5> <6>

<7>
<8>

<9> <10>

<11><12>

<13> <14>

<15><16>

0110

0000

0010

0001

0011

0101

1110

1100

1000

1010

1111

1101

1001

1011

<1> <2>

<3><4>

<5> <6>

<7><8> <9> <10>

<11><12>

<13> <14>

<15><16>

(a)

(b)

Fault Tolerant Embedding

Faulty node

Skipped node
Dim0

Dim1
Dim2

Dim3

0111

0111

0100

0100

Figure 2: Ring embedding maximizing size of ring: (a) Faulty processor reached along dimen-

sion 0 (b) Faulty processor reached along dimension 2

so far constructed is backtrackedalong df and the ring construction is continued by the previous

processor in the embedding. For example, as in Fig. 2 (b), if processor 0110 is faulty (which

is the processor accessed along dimension 2), the algorithm backtracks to processor 0011 and

replaces the dimension sub-sequence [0; 2; 0] by [2] with the next dimension pointer pointing to

dimension 1.

The algorithm is guaranteed to find a ring embedding (where for each faulty processor, a

healthy processor is removed from the original embedding) provided that the number of faults

does not exceed bd+1
2
c. In the first case, when the faulty processor is reached along df , the faulty

processor has an even rank in the embedding sequence. The algorithm skips the faulty processor

and the processor after it in the fault–tolerant embedding. In the second case, when the faulty

processor has an odd rank in the original embedding sequence, the algorithm skips the faulty

processor and the processor before it in the fault–tolerant embedding. To tolerate multiple faults

the algorithm handles fault distributions where (1) no two faults are distance two apart and(2) if

two faults are distance one apart then the first faulty processor encountered in the original basis

ring must have an even rank. The authors fix the number of faults f , and permute the dimension

sequence of the basis ring 2f � 1 times, by defining 2f � 1 embedding dimension sequences

DM0; DM1; :::; DM2f�2 where DMi is DM0 with dimension 0 and dimension i swapped. The

number of faults is fixed to not exceed bd+1
2
c since the number of permutations cannot exceed

d. It is shown that there exists at least one dimension sequence for which the basis ring satisfies

the above two conditions and is guaranteed to find a fault-tolerant embedding of size � 2
d
�2f .

2.2 Meshes

In a faulty hypercube, an m1 � m2 mesh can be obtained by removing faulty rows and/or

columns in a 2
d1 � 2

d2 mesh, where d1 � dlog2m1e, d2 � dlog2m2e, and (d1 + d2) � d,

and finding a Gray code ordering of the m1 healthy rows and m2 healthy columns [24]. An

example of embedding a 5 � 5 mesh in a faulty 6-cube is illustrated in Fig. 3. An initial

embedding of an 8 � 8 mesh shown in Fig. 3 is done by generating a 2-D Gray code for the

coordinates b5b4b3 and b2b1b0. A 5 � 5 mesh is obtained by removing the faulty rows and/or

columns in Fig. 3 and then by rearranging the rows and columns in Gray code ordering. For

this example, the rows would be arranged as [101, 100, 000, 010, 011] and the columns as

[001, 000, 100, 110, 111]. However, the search for a Gray code ordering of healthy rows and

columns is computationally complex. Pasting of the healthy rows/columns for constructing

either side of the mesh is equivalent to embedding a ring in a faulty d1-subcube or a faulty

d2-subcube respectively and can be constructed using the ring embedding techniques so that a

faulty node is skipped along with a node adjacent to it. In the worst case this results in two

rows or columns of nodes being skipped for every fault, resulting in an embedded mesh of size

(2
d1 � 2x)� (2

d2 � 2y), where x+ y = f .

However, if the hypercube has Direct-Connect Capability[25] and assuming that only pro-

cessors can fail, then a linear array of any length m can be formed by first forming a linear array

of length 2
d in a d-cube using a Gray code sequence and then connecting through the Direct-

Connect Modules(DCM’s) of the faulty nodes. An m1 � m2 mesh can be formed similarly

by pasting the healthy rows and columns through the DCM’s of faulty rows/columns (Fig. 3).

In routing messages, if the e-cuberouting algorithm [25, 26] is used (dimension order routing

starting with dimension 0), communication from the nodes of subcube xxx001 (column 001)

to the nodes of subcube xxx110 (column 110) will go through the DCM’s of subcube xxx000

and subcube xxx010; on the other hand, communication from the nodes of subcube xxx110

to the nodes of subcube xxx001 will go through the DCM’s of subcube xxx111 and subcube

xxx101. Thus e-cube communication is not suitable for two reasons: one is that routing is

through a different set of processors in each direction. The more important reason is that a

link connecting 2 processors in the mesh (such as xxx000 and xxx001) may be used, which is

also used for local (nearest neighbor) communication between those 2 processors. In order to

guarantee regular and uninterrupted local communication, messages between two processors in

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

000
u u

u

u

u

u

uu

u

001 011 010

b2b1b0

110 111 101 100

100 u u

101 u

111 u

110 u

010

011

001 u

000

b5b4b3

u : faulty nodes
: removed columns and rows

Figure 3: A 5�5 mesh embedded in a 6-cube

pasted rows/columns must go through the DCM’s of the deleted rows/columns. In the example

shown in Fig. 3, messages between the nodes of subcube xxx001 (column 001) and the nodes

of subcube xxx110 (column 110) should go through the DCM’s of subcube xxx011 and sub-

cube xxx010 in both directions. Thus the DCM must be designed to route messages in both

directions in accordance with the coordinate sequence used in defining each side of the mesh.

In a specific Karnaugh-map illustration of a 2d1 � 2
d2 mesh, the group of nodes in a column

or a row form a d1-subcube or a d2-subcube, and are represented by a unique d-tuplef0; 1;xgd.

In algorithm MESHDCM[24], we ignore all the freecoordinates “x” and consider the “bound”

coordinates only in deleting faulty rows/columns and thus the group of nodes in a row or a col-

umn are identified by a unique d1-tupleor a unique d2-tuplerespectively. The faulty and healthy

nodes of a row/column have the same representation when they are indicated by considering the

“bound” coordinates only. Therefore, deleting any one faulty node in a row/column is equiv-

alent to deleting the entire row/column. MESHDCMgiven below, first chooses d1 coordinates

among the d coordinates to construct the m1 side of the m1 �m2 mesh, where d1 = dlog2m1e,

and then constructs the m2 side of the mesh by using the remaining (d-d1) coordinates.

Algorithm MESHDCM:

Step 1: If (d� d1) < d2 or (2d � f) < (m1 �m2), then exit.

Step 2: Calculate the number of extra rows Ne = (2
d1 �m1), that can be deleted for forming

the m1 side of the mesh.

Step 3: Choose d1 coordinates among the d coordinates to construct the m1 side of the mesh.

Then construct the list Fd1 by representing the f faulty elements in the fault list F by the

d1 coordinates only (j Fd1 j� 2
d1), and deleting identical representations of the faulty

nodes in the d1 coordinates.

Step 4: If j Fd1 j> Ne then construct Fm1
by choosing Ne elements from the fault list Fd1 . Else

let Ne =j Fd1 j and Fm1
= Fd1 , and choose any m2 columns and exit. The Ne elements

in Fm1
correspond to the rows to be deleted represented in the d1 coordinates.

Step 5: Construct Fm2
, the list for constructing them2 side, by deleting from F the faulty nodes

in the rows in Fm1
, then represent the faulty elements by the d2 coordinates only deleting

identical representations. Calculate the number of healthy columns Nc = 2
d2� j Fm2

j.

If Nc < m2, then go to Step 6, else exit.

Step 6: Check if all the possible choices of Ne nodes have been used exhaustively in Step 4. If

yes, then go to Step 7, else go to Step 4 for the next trial.

Step 7: Check if all the combinations of choosing d1 coordinates among the d coordinates are

examined exhaustively. If yes, then exit, else go to Step 3 for the next trial.

The complexity of Algorithm MESHDCMis analyzed as follows. In the worst case,
�
d

d1

�
combinations of coordinates will be tried to construct the m1 side of the mesh and for each

choice, there are
�
jFd1

j

Ne

�
ways of deleting rows. Step 3 has a complexity of flog2f and Step

5 has a complexity of (fNe + flog2f). Therefore, the time complexity is O(

�
d

d1

�
[flog2f +�

jFd1
j

Ne

�
(flog2f + fNe)]). If f < d, (Ne < d) a pessimistic worst case complexity of O(P 2d2)

can be derived since
�
d

d1

�
< P , and

�
jFd1

j

Ne

�
< P , where P = 2

d.

An example of embedding a 3�3 mesh in a 4-cube with 3 faulty nodes (f1=0001, f2=0101,

and f3=1100) by Algorithm MESHDCM is shown in Fig. 4. Since d=4, m1=3, and m2=3,

(d�dlog2m1e) = 2, dlog2m2e = 2, and (2
d
� f) = 13 > (m1�m2) = 9, the mesh embedding

is possible. Then we have Ne = (2
d1-m1) = 1. Since d1 = dlog2m1e = 2, there are

�
4

2

�
ways of

choosing 2 coordinates among 4 coordinates. As shown in Fig. 4, b3b2 is selected first and the

faulty nodes represented in b3b2(elements of Fd1) are F1 = 00, F2 = 01, F3 = 11. In trial 1, F1

is deleted and Fm2
is f01; 00g. Since Nc = 2 < m2, trial 2 is required. In trial 2, F2 is deleted

and Fm2
is f01; 00g. Since Nc = 2 < m2, trial 3 is required. In trial 3, F3 is deleted, Fm1

is

f11g, Fm2
is f01g and Nc = 3 = m2.

2.3 Binary Trees

Another topology that is often used in algorithms is a binary tree. Two significant results re-

garding tree embeddings have emerged. It was shown in [21] that a tree of height d, Td can be

Illustration of Trial 1:

mmmm

mmmm

mmmm

mmmm00-Delete

01
11
10

00 01 11 10

f3

f1

f2

b3b2

b1b0

mmmm

mmmm

mmmm01
11--

10

6 6
Delete

00 01 11 10

f3

f2

b3b2

b1b0

2 healthy columns < 3

Illustration of Trial 2:

mmmm

mmmm

mmmm

mmmm00
01-Delete

11
10

00 01 11 10

f3

f1

f2

b3b2

b1b0

mmmm

mmmm

mmmm00
11--

10

6 6
Delete

00 01 11 10

f3

f1

b3b2

b1b0

2 healthy columns < 3

Illustration of Trial 3:

mmmm

mmmm

mmmm

mmmm00
01
11-Delete

10

00 01 11 10

f3

f1

f2

b3b2

b1b0

mmmm

mmmm

mmmm00
01--

10

00 01 11 10

f2

f1

6
Delete

b3b2

b1b0

mmm

mmm

mmm00
01--

10

00 11 10b3b2

b1b0

Figure 4: Illustration of a 3x3 mesh embedding using algorithm MESHDCM

000 001

011
010

100

110

101

111

000 001

011
010

100

110

101

111
Root

Root

Tree Nodes

Intermediate Nodes

Faulty Node

L

R

(b)

L Left child
R Right child

L

R

(a)

Figure 5: Tree embedding maximizing the size of the embedding (a) T3 with dilation 2 - basis

embedding (b) T3 with dilation 2 - fault-tolerant embedding

embedded in a d-cube with maximum dilation 2, i.e., the adjacency of nodes in a tree are not

preserved. Here, the motivation is to utilize the maximum number of nodes thus trading off the

increased dilation for a maximum embedding size. The other approach taken in [17, 18] was

to show that a binary tree of height d � 1, Td�1, can be embedded in a d-cube with unit dila-

tion. Here the trade-offs are just the reverse of the previous approach, i.e., preserving adjacency

results in not maximizing the number of nodes used.

Fault–tolerant embeddings have been considered using one of the above two approaches as

the basis embedding. The factors considered in the fault–tolerant embedding are: (1) the num-

ber of faults tolerated, (2) the dilation of the fault–tolerant embedding, (3) the reconfiguration

cost i.e., the number of nodes in the new embedded graph that do not have the same state as in

the basis embedding and (4) the size of the embedding.

In [21] the basis embedding is Td where the maximum dilation is 2 as shown in Fig. 5 (a)

by the dark lines. The approach as seen in Fig. 5 (b) is to use the intermediate node i.e., node

111 (in the multi hop edge of the tree) to replace a faulty node (node 010) and utilize another

tree node (node 001) in the basis embedding as an intermediate node as well as a tree node in

the fault-tolerant embedding. Here the objective is to minimize the dilation of the fault–tolerant

embedding (i.e., keep it constant at 2) and not degrade the size of the embedding (i.e., embed

Td). Only one fault is tolerated by this scheme. Note also that the new fault–tolerant embedding

results in the states of all the nodes being changed as shown in Fig. 5 (b). For example, the root

of the tree is mapped to node 011 instead of 110, the left child to 111 instead of 010, the right

child to 000 (via 001) instead of 101 (via 111) and so on. Improvements to this result have been

made in [20]. Here, a fault–tolerant embedding with Td�1 as the basis embedding is used so

that the dilation is minimized (i.e., kept constant at 1) and 2 faults are handled. This approach

has the same penalty as before i.e., a reconfiguration cost of 2d�1
� 1. Furthermore, the height

of the embedding is d� 1 due to the approach taken for the basis embedding.

The other approach taken is to minimize the reconfiguration cost [27, 22]. Here the basis

embedding has unit dilation but the fault–tolerant embedding has a dilation of 2 which is the

penalty paid to obtain a reconfiguration cost of 1. In [22] the reconfiguration algorithm involves

two state changes if the faulty node is at height 2 in the basis embedding. Both these algorithms

use a mirror image of the faulty node along some dimension as the spare to replace the faulty

node. The authors in [22] use a distributed algorithm where the faulty node is remapped and

only its parent and children are aware of the change. The authors also extend their algorithm to

tolerate multiple faults. Here they use a form of backtracking where if a node cannot embed its

children, it declares itself faulty to its parent who must handle the reconfiguration. In the worst

case, the algorithm will backtrack up to the root and the embedding will fail.

The results discussed so far have not considered maximizing the number of faults that can

be tolerated. In [28] the authors show that in a d-cube with d � 1 � dlog2de node and/or link

faults, there exists a d � 1 tree which avoids the faults. Then the fault avoiding (d � 1) tree is

constructed in two steps. First, a fault-free tree T 0 is constructed in which each node has exactly

two or no children and the leaves of T 0 are at level d� k or level d� k� 1, where the level of a

node is the height of the node from the root and k = dlog2de+2. Second, fault avoiding (k�1)

trees (i.e., of height k � 1) are constructed to “attach” onto the leaves of T 0 at level d � k and

fault avoiding (k) trees to attach onto the leaves at level d� k� 1. It is shown that a k-subcube

can be associated with the leaves at level d � k and a (k + 1)-subcube with the leaves at level

d�k�1. These subcubes which partition the d-cube have the following properties. Exactly one

of the leaves of T 0 and at most two internal nodes of T 0 belong to each of the k�cubes and each

of the k-cubes has at most onefault. Exactly one of the leaves of T 0 and at most oneinternal

node of T 0 belong to each of the (k + 1)�cubes and each of the (k + 1)-cubes has at most two

faults. Within such subcubes fault avoiding (k � 1)-trees and k-trees can be constructed.

3 Finding Fault-Free Subcubes

Parallel algorithms for hypercubes can be formulated with the dimension d of the hypercube as

a parameter of the algorithm[5] and therefore can be run on a fault-free subcube of the faulty

hypercube. A simple distributed procedure to find the maximum dimension md of a fault-free

subcube is given in [5]. However, as indicated in [5], this procedure does not always find md

and furthermore, it does not construct the set of fault–free md–subcubes. An algorithm which

always finds md and also the complete set of fault-free md-subcubes is presented in [4]. The

results are briefly explained below. The algorithm is formulated to run on a single processor

which would typically be the host or the resource manager in a commercial hypercube system.

Note that there are 2k
�
d

k

�
different (d�k)–subcubes and a total number of

Pd
i=1 2

i
�
d

i

�
= 3

d
� 1

different subcubes in a d–hypercube.

A commutative and associative intersection operation Id = fIg
d on the faulty processors is

defined as follows where I denotes the intersection of individual coordinates; 0I0 = 0, 1I1 = 1,

0I1 = q, and qI0 = qI1 = qIq = q. The boundcoordinates (“0” s and “1” s) in the intersection

of all faulty processors indicate the fixedcoordinates among them. Hence, the number of fixed

coordinates, nf , gives the number of (d� 1)-dimensional fault-free subcubes. Finding (d�k)–

dimensional fault-free subcubes for k > 1 is more complex and will be described later in this

section. The algorithm given in [4] is based on using the Inclusion-Exclusion[29] principle to

count the number of subcubes of a given dimension (d� k), that can be formed in the presence

of faulty processors and links.

Lemma 1[4]: The number of (d� k)–subcubes destroyed by a faulty processor is Dd�k =�
d

k

�
.

Let Sd�k
Fi

denote the set of (d� k)–subcubes that faulty processor Fi belongs to. Subcubes

jointly destroyed by ` faulty processors Fi1 ; Fi2 ; : : : ; Fi` or subcubes in Sd�k
Fi1

\ Sd�k
Fi2

\ � � �Sd�k
Fi`

can be counted without explicit enumeration of subcubes in each set by using the following

lemma.

Lemma 2[4]: The number of (d � k)–dimensional subcubes jointly destroyed by ` faulty

processors Fi1 ; Fi2 ; : : : ; Fi` is

Kd�k(Fi1 ; Fi2 ; : : : ; Fi`) =

nf

k

!
(1)

where nf is the number of fixed coordinates in Ii1i2���i` = Fi1IdFi2Id � � � IdFi` .

For example, in a 5-cube, if the faulty processors are F1 = (00011) and F2 = (01111), then

I12 = F1IdF2 = (0qq11). For k = 2, d� k = 3 the 3–subcubes (xxx11), (0xxx1) and (0xx1x)

are destroyed by both F1 and F2. Note that F1 and F2 each destroy ten 3-cubes.

In counting the number of distinct(d�k)–subcubes destroyed by faulty processors F1; F2; ::::; Fr,

the common(d � k)–subcubes destroyed should not be includedmore than once in the count

and should be excludedby using the Inclusion-Exclusion[29] principle of counting given below.

Theorem 1[29]: Principle of Inclusion-Exclusion. If N is the number of elements in a set

S, the number of elements of S not having any of the properties p1; p2; :::::; pr is given as:

N(p01p
0

2 � � � p
0

r) = N �

rX
i=1

N(pi) +
X
i6=j

N(pipj)�
X
i;j;k

N(pipjpk)

+ � � �+ (�1)
rN(p1p2 � � � pr) (2)

Here, N(pi) denotes the number of objects having property pi, N(pipj) denotes the number

of objects having both properties pi and pj , and so on. Objects having the same property pi

are elements of the set Si. The second summation on the right hand side of the equation is

over all pairs of sets SiSj(i 6= j) and therefore enumerates the number of elements in pairwise

intersections of sets Si and Sj , the third summation is over triples SiSjSk and finally the last

term enumerates the number of elements in the intersection of sets S1 � � �Sr.

This principle can be applied to counting the number of fault-free or available subcubes of

a given dimension (d� k), Gd�k, as described by the following theorem.

Theorem 2[4]: The number of fault-free (available) (d�k)–subcubes,Gd�k, in the presence

of r faulty processors F1; F2; ::::Fr is

Gd�k = 2
k

d

k

!
� r

d

k

!
+

X
i6=j

Kd�k(FiFj)�

X
i;j;k

Kd�k(FiFjFk)

+ � � �+ (�1)
rKd�k(F1F2 � � �Fr) (3)

The steps of the algorithm for finding md are given as:

1. Construct the intersectionI12���r and computenf for this intersection. Ifnf � 1 then exit

withmd = d� 1 andGd�1 = nf .

2. Construct all pairwise intersectionsIi1i2 and computenf for these intersections.

3. Construct intersections(Ii1���i`�1)IdF`, 2 < ` < r, for which nf(Ii1���i`�1) � 2 and

nf(Iij i`) � 2 for all ij 2 fi1; i2; : : : ; i`�1g, and computenf for these intersections.

4. for k = 2; 3; : : : do

(a) computeKd�k(Fi1 ; Fi2; � � � ; Fi`) from equation(1), for1 < ` < r.

(b) computeGd�k from equation 3.

(c) exit the loop ifGd�k 6= 0 withmd = d� k and Gmd
= Gd�k.

The complexity of the algorithm is O(k2r) which occurs only when all of the intersections have

to be constructed and nf � k for each intersection. With the assumption that r � d[1], the

complexity can be expressed as O(k2d).

Once md = d�k and Gmd
are found, an md-dimensional subcube can be found as follows.

There are no (d � k)–dimensional fault-free subcubes, if all the 2
k combinations of f0; 1gk

are exhaustively covered at each
�
d

k

�
different k-coordinate position combinations by the set

of faulty processors. If any one of the 2
k combinations of f0; 1gk, at any one of the

�
d

k

�
k-

coordinate position combinations, is found to be missing in the list of faulty processors, then

the d–tupleconstructed by assigning that missing k–tuplecombination to those particular k

coordinate positions and also assigning the remaining d� k coordinates as free(“x”), defines a

(d� k)–dimensional fault-free subcube. The search for missing combination(s) for each faulty

element can be avoided by encoding each k–tupleat a k-coordinate position combination of

faulty elements with a 1-out-of-2k code and then simply using the logic ORoperation on these

encoded 2
k–tuples.

Consider the following example:

b3 b2 b1 b0

F1 : 0 0 0 0

F2 : 0 1 0 0

F3 : 0 1 1 0

F4 : 1 0 0 1

Equation 3 is used to find the number of fault-free 2-cubes as follows:

For k=2 (d-k=2);

I12 = (0q00) nf = 3, I13 = (0qq0) nf = 2, I23 = (01q0) nf = 3,

I14 = (q00q) nf = 2, I24 = (qq0q) nf = 1, I34 = (qqqq) nf = 0,

I123 = (0qq0) nf = 2, I124 = (qq0q) nf = 1,

I134 = I234 = I1234 = (qqqq) nf = 0,P
i 6=j Kd�k(FiFj) =

�
3

2

�
+

�
2

2

�
+

�
3

2

�
+

�
2

2

�
= 8

P
i;j;kKd�k(FiFjFk) =

�
2

2

�
= 1

G2 = 2
2
�
4

2

�
� 4

�
4

2

�
+ 8� 1 = 7. Since G2 6= 0, the maximum dimension m4 = 2.

b1b0=11 is one of the missing combinations and therefore the 2-cube xx11 is found as one of

the fault-free 2-cubes.

The upper bound for the complexity of finding the missing combination isO
�
(rk + 2

k
)

�
d

k

��
,

when the number of faults r is not restricted. A simpler bound is derived in [4] for r � d.

4 Communication in Faulty Hypercubes

4.1 Global Sum/Global Broadcast Algorithms for Healthy Hypercubes

Efficient communication algorithms [30, 31] have been devised for healthy hypercubes. The

standard algorithm for broadcasting a message to all nodes from a single source was presented

in [26]. This algorithm embeds a Spanning Binomial Tree (SBT) in the hypercube. The Global

Sum (GS) and Global Broadcast (GB) algorithms are the duals of each other.

In the GS operation, data residing in the nodes of a d-cube is collected in a Final Collecting

Node (FCN). The GS algorithm requires each node to know the address (cd�1::::c0) of the FCN.

For each step i, (i = d� 1; :::; 1; 0), all nodes with address (cd�1::::cix
i
) receive accumulated

Dim0

Dim1
Dim2

C

S

Final Collecting Node

Initial Source Node

100

000

110 111

101

010

001

011

100

000

110 111

101

010

001

011

100

000

110 111

101

010

001

011

1 1

1

2

21

3

1

2 2

3

3

3
3

1

2

2

3

3

3

3

(a)
(b)

(c)

C S

S<111>

<001>
<000>

<000>

<000>

<000>
<011>

<001>

Figure 6: Communication algorithms for a healthy 3-cube (a) GS with dimension sequence

(2; 1; 0) (b) GB with dimension sequence (0; 1; 2) (c) GB initiated by ISN

data from nodes with address (cd�1::::cix
i
) along dimension i. Hence the data residing in the

d-cube is collected in an i�subcube at the end of each step. Here, powers of fx; 0; 1g refer to

concatenation of fx; 0; 1g and x
0 is the empty string. The communication steps are shown in

Fig. 6 (a) for a communication dimension sequence (2; 1; 0) where the FCN is 100. Note that

all nodes require the address of the FCN to determine whether to send or receive the data, or to

not participate at each step.

In the GB operation, data residing in an Initial Source Node (ISN) is distributed to all nodes

in the d-cube. Each node requires to know the address (sd�1::::s0) of the ISN. For each step

i, (i = 0; 1; ::::; d � 1), all nodes with address (sd�1::::six
i
) send data to nodes with address

(sd�1::::six
i
) along dimension i. Data resides in an (i + 1)�subcube at the end of i steps. The

communication steps are shown in Fig. 6 (b) for a communication dimension sequence (0; 1; 2)

where the ISN is 100.

The GB operation is initiated by an ISN. If a d-bit control word is sent by a source node

to a receiving node indicating how the receiver should continue broadcasting the message, then

nodes other than the ISN do not need to know the address of the source. If an intermediate

node receives a message with the ith bit of the control word set to 1 (scanning from left), then

000

100

010

001

011

111

101

110
<111>

<011>

<001>

<000>

<001><000>

1

2

2

3

3

(a)
000

100

010

001

011

111

101

110

<111>

<011>

<001>

<000>

1

2

3

<001>

3

4

<111>

(b)

Faulty Node

Unsafe Node

Active NodeDim0

Dim1
Dim2

Figure 7: Global broadcast in a faulty hypercube from (a) active ISN (b) unsafe ISN

it sends a copy of the message along dimension i. Each node repeats this step as many times

as the number of 1’s in the control word. Fig. 6 (c) illustrates this algorithm where the word

in the angle brackets (<>) is the control word received by the node. The ISN is 100 and the

communication dimension sequence is (2; 1; 0).

4.2 Fault-Tolerant Global Broadcast Algorithms

The motivation in fault–tolerant communication algorithm design has been to devise schemes

that take the same number of communication steps as the algorithms for healthy hypercubes

since an increase in the number of communication steps is a heavy penalty to pay in message

passing systems.

Several researchers [32, 27] have investigated GS/GB algorithms for faulty hypercubes. In

[32] the GB is performed by constructing a family of d link-disjoint (a link is unidirectional

and an edge consists of two directed links) spanning trees of height d rooted at the source node.

This algorithm tolerates dd
2
e � 1 edge faults and takes d communication steps.

Broadcasting in faulty hypercubes using a d-bit control word was considered in [27], where

an unsafenode is defined as one that has at least two faulty or unsafe neighbors. A node that is

not unsafe is defined as an activenode. An algorithm that takes O(d3) communication steps is

used to determine the unsafe nodes in a d-cube. The authors show that the GB algorithm takes d

communication steps if the source node is not unsafe or faulty (i.e., active) and d+1 steps if the

source is unsafe provided that the number of node faults does not exceed dd
2
e. At each step of

the broadcast an active node is assigned to broadcast in a subcube, the subcube size indicated by

the number of 1’s in the control word received by the active node. The control word is scanned

from left to right. The algorithm sends a message from an active node to an activeneighbor

along dimension i, if the corresponding bit i of the control word is 1; it sends a message to an

unsafeneighbor along dimension i only if bit i of the control word is 1, and all other bits are

0’s. In other words, it broadcasts to all unsafe nodes only in the dth step of the GB algorithm.

Fig. 7 (a) illustrates a 3-cube with two faults performing the GB from an active ISN 111 in 3

steps. The number in the square denotes the communication step number and the sequence in

the angle brackets (<>) is the control word received by the node. The ISN generates a control

word of < 111 > and first sends along dimension 3 with the control word altered to < 011 >

to reflect the subcubes 1xx and 0xx in which nodes 111 and 011 must continue to broadcast.

If the ISN is an unsafe node, then the ISN sends the message to the first active neighbor

obtained by scanning the control word from left to right. This active node acts as a new ISN

and performs the GB as before except that no message is sent back to the original unsafe ISN.

Fig. 7 (b) illustrates the cube performing the GB from an unsafe ISN i.e., node 100. Note that

in step 4 node 101 does not send the message to 100 since 100 is the original ISN.

4.3 Global Sum for Faulty Hypercubes

In Section 4.1 a d-step algorithm for the GS operation in healthy hypercubes was described.

The GS [24] can also be collected by performing a partial Global Sum operation in 2
i disjoint

(d� i)-subcubes in parallel, collecting the partial global sum in nodes that form an i-subcube.

For example, in a 4-cube, for i = 1, splitting the 4-cube along dimension 3, results in two

disjoint 3-cubes 0xxx and 1xxx. Each subcube can perform a partial GS in 3 steps collecting in

nodes 0000 and 1000 respectively, which are the nodes of the 1-cube x000. Then, these 2
i
= 2

nodes of the 1-cube x000 perform a GS operation in 1 step. Note that we can split the cube

into disjoint subcubes of different sizes and yet apply the same principle. For example, the

3-cube 1xxx obtained earlier can be split along dimension 2 into two 2-cubes 10xx and 11xx.

Now, the partial GS can be performed in 2 steps in the three subcubes S1 = 0xxx, S2 = 11xx,

and S3 = 10xx in parallel, with nodes (0000 and 0100 2 S1), node (1100 2 S2) and node

(1000 2 S3) collecting the partial results. These are nodes of the 2-cube xx00 and can perform

a GS in 2 steps. Note that in general, the dimension sequence of the partial GS can be different

for the disjoint cubes. This technique can be used in faulty hypercubes where the d-cube is split

into good and faulty partners as explained next.

Consider the 4-cube shown in Fig. 8(a) with 3 faulty nodes at f1 = 0010, f2 = 1100, and

f3 = 1111. The idea is to try to split the 4-cube into two 3-cubes, one healthy and the other

containing all faulty nodes. If such a split can be found, then the healthy nodes in the faulty

cube will send to the adjacent nodes in the good cube in one step and the GS will be performed

in the good cube in d � 1 communication steps. A (d � 1)�cube containing all of the faulty

nodes can be found by applying the intersection operation Id = fIg
d defined in Section 3

(0I0 = 0; 1I1 = 1; 0I1 = q; qI0 = qI1 = qIq = q). The bound coordinates in the intersection

3

1 2
0xxx 1xxx

0x1x 0x0x 10xx 11xx

GG FF

(b)

Dim2

Dim0

Dim1

Dim3

Healthy nodes

Faulty nodes

0110

0000

0010

0001

0011

0101

0111 1110

1100

1000

1010

1111

1101

1001

1011

(a)

Collecting Cube 0x0x
Collecting Cube 10xx

0100

Figure 8: (a) Performing 4 step GS in a faulty 4-cube (b) Split tree for the GS operation shown

in (a)

of all faulty processors indicate the fixed coordinates among them, and can be used to split the

cube. For the 4-cube considered, I1;2;3 = f1If2If3 = qqqq, and therefore a good-faulty

subcube split cannot be found. Hence the 4-cube is split along any dimension into two faulty

3-cubes. Fig. 8(b) shows the first split along dimension 3 resulting in two 3-cubes 1xxx and

0xxx where f2 and f3 are contained in 1xxx and f1 is contained in 0xxx. Since 0xxx contains

only one fault, we can choose any dimension, for example dimension 1, to split it into good-

faulty partners 0x0x and 0x1x respectively. 1xxx has to be split again and dimension 2 which

is a bound coordinate of the intersection (I2;3 = 11qq) is chosen. This results in good-faulty

partners 10xx and 11xx respectively. Now, the healthy nodes in the faulty subcubes can send

their data to their partner in the good subcubes in parallel in 1 step. The partial GS’s for the

subcubes 0x0x and 10xx can be performed in parallel in 2 steps. In order to collect the results

of the 2 partial GS’s in one node in the 4th step, the nodes collecting the partial GS’s in each 2-

cube must be adjacent, i.e., the collecting nodes containing the result of the partial GS’s must be

in the same 1-cube, so that the final GS can be collected in 1 step. Such collecting nodes can be

determined by performing a consistency operation on the healthy (collecting) subcubes found in

the last split. For the two collecting cubes 10xx and 0x0x in Fig. 8(a), the collecting nodes can

be found by performing a consistencyoperation &d = f&g
d defined as follows: 0&0=0&x=0,

3

0xxx 1xxx

GG FF
10xx 11xx

2 2

00xx 01xx

Figure 9: Other possible way to split the faulty 4-cube

1&1=1&x=1, 0&1=–&0=–&1=–&x=–, x&x=x. The candidate nodes for each collecting cube

are obtained by replacing the “�” coordinates of the result with the corresponding coordinate

values in the collecting cube. For this example, 0x0x&10xx = �00x. The candidate collecting

nodes (000x 2 0x0x) and (100x 2 10xx) form a 1-cube called the Final Collecting Cube (FCC).

Fig. 8(b) shows the splitting operation. The split treeis a binary tree where each node represents

a split and has associated with it a dimension di used at that split to partition the cube. Note that

the split tree does not include the edges of the tree corresponding to the last splitting operation

to obtain the good-faulty partners (shown in dotted lines) since these edges do not have a node

at either end. A leaf of the split tree is a node of degree 1, while an internal nodeis a node of

degree 2 (root) or 3.

Now consider the same example but with dimension 2 chosen to split both subcubes 0xxx

and 1xxx into good-faulty partners. The split tree in Fig. 9 shows that the 4-cube can be split

resulting in two good 2-cubes 01xx and 10xx, but partial collecting nodes that are adjacent

cannot be found.

4.4 d-Step Fault-Tolerant GS/GB Algorithm

By using a uniquedimension at each split, the GS/GB operation can always be performed in d

steps if the number of faults is � d
d
2
e. Having split the cube, the data from each healthy node in

the faulty subcube is sent to its partner in the good subcube along a dimension i, where i is the

dimension used at the final split to obtain a good-faulty pair. This is done in one step. Now all

the data resides in the good subcubes. The following Depth First Search (DFS) operation on the

split tree yields the dimension set Dc of the FCC. Initially all the nodes of the tree are uncolored

and Dc is empty. When a node is visited, if it is not colored, and it is not a leaf node, then it is

colored and the dimension associated with that node is added to set Dc. The dimension of the

FCC, which is the number of internal nodes in the split tree is denoted as k where k = j Dc j.

Note that the dimension set of the FCC can also be obtained by the & operator applied to the

good subcubes. The data in each good subcube is collected in parallel by a partial GS performed

in d � k � 1 steps. Let the set of free coordinates of the collecting good subcubes be denoted

by Dgi where i is the ith good subcube. The dimension sequence along which to perform the

partial GS operation in the ith good subcube is determined by deleting from Dgi the dimensions

in the intersection of Dgi and Dc. By construction we can show that the collecting node(s) in the

good subcubes form a k dimensional Final Collecting Cube (FCC). The GS operation can then,

be performed on the FCC in k steps to collect the data in one node. Hence, the entire operation

takes d steps. The formal proofs can be found in [33].

The following example illustrates the methodology used to determine the FCN and the

dimension sequence along which to perform the first communication step from faulty to good

subcubes, and thereafter the partial GS in each good subcube.

Fig. 10 shows a 5-cube with 3 faults f1 at 00100, f2 at 00010, and f3 at 11000. Fig. 11

shows the split tree for a chosen split. The FCN that collects the result of the GS operation

is determined from the constructed split tree. Each node (circle) represents a subcube and the

number inside the circle represents the dimension along which that cube is split. First the cube

is split along dimension 4, giving rise to two faulty cubes 1xxxx and 0xxxx. Next, the first

faulty subcube (1xxxx) is split along dimension 3 and the other faulty subcube (0xxxx) along

dimension 2. The first split gives rise to a good-faulty pair where the good subcube is denoted

by G1 = 10xxx. The second faulty subcube is split into two faulty subcubes 0x1xx and 0x0xx.

Finally, the faulty subcubes 0x1xx and 0x0xx are split along dimensions 1 and 0 respectively

to give good subcubes G2 = 0x11x and G3 = 0x0x1 respectively. Note that this is only one of

the d! ways to split the 5-cube into good-faulty partners where a unique dimension is chosen for

each split.

Using the DFS algorithm on the split tree, fDcg = f4; 2g. The dimension of the FCC, is

k = j Dc j = 2. The FCC is given by x0x11 where the fixed dimensions correspond to

the dimensions that result in the good-faulty splits, and the free dimensions correspond to the

internal nodes of the split tree.

Any node contained in the FCC can be chosen as the FCN. Fig. 10 shows the GS operation

for the 5-cube with the FCN being 00111. The number i in the square denotes the communica-

tion step i involved in the operation. In the first step, each node in the good subcubes receives

data from its healthy partner in the faulty subcubes along the dimension used to perform the

final split. Nodes in G1 receive from their partners along dimension 3, while nodes in G2 and

G3 receive from their partners along dimensions 1 and 0 respectively. This takes one communi-

cation step. The partial GS in each good subcube is performed in d� k � 1 steps i.e., 2 in this

case.

The dimension sequence Di along which to perform the partial GS operation in the ith

good subcube must satisfy the conditionDi \Dc = � . Hence, in G1 the GS is performed along

dimensions 0 and 1, in G2 along 0 and 3, and in G3 along 1 and 3. The action to be taken by

a node i.e., send, receive, or not participate is determined as in the healthy GS algorithm using

the address(es) of the collecting node(s) in each subcube. The FCC is x0x11. The collecting

nodes in G1 are 10011 and 10111, the collecting node in G2 is 00111, and the collecting node in

Collecting Cube G1
 10xxx

01111

01011

00100
00101

00001

00010 00011

01110

01100

01000

01010

01001

01101

1 1 1

2 2
00111

3

1

1

1

2 2
3

00000

1
1

11

1

1

1

2

2

2

2

3

3

4

4

5

Dim2
Dim1

Dim0

Dim3

Dim4

00110

10100

10110

10000

10010

10001

10011

10101

10111 11110

11100

11000

11010

11111

11101

11011

11001

L1

L1

L2

L3

FCN

Faulty nodes

Healthy nodes
L2 Local collecting node in G2

L3 Local collecting node in G3

L1 Local collecting node in G1

Collecting Cube G2
0x11x

Collecting Cube G3
 0x0x1

Figure 10: Hypercube of dimension 5 with three faulty nodes performing GS operation

11xxx
F G

1 0

4

3 2

G F G F

10xxx

0x11x 0x10x 0x0x1 0x0x0

G1

G2 G3

1xxxx 0xxxx

0x1xx 0x0xx

Figure 11: Split tree for the faulty 5-cube in Fig.10

G3 is 00011. After the partial collection in the collecting nodes, the GS operation is performed

on the FCC in 2 steps collecting the data in the FCN. The total number of steps taken is 5 (1

step for sending from faulty to good subcubes + 2 steps to perform the local partial GS in each

good subcube + 2 steps to perform the GS in the FCC).

5 Fault-Tolerant Hypercubes

As mentioned in Section 1, faulty nodes can substantially reduce the dimension of the largest

fault-free available subcube. To preserve the dimensionality of the faulty hypercube, hardware

redundancy and spare allocation schemes [8, 9, 10, 7, 11, 12, 13, 14, 15] have been investigated.

A hardware scheme was first proposed by Rennels [8]. Here, N = 2
d processors are

grouped into S = 2
s clusters of M = 2

m processors each, where d = m + s and one spare

is assigned per cluster. Crossbar switches are employed to add spare nodes via the additional

port in dimension (d + 1) (Fig. 12). If a processor fails in a cluster, the spare replacing it must

be able to communicate in d dimensions. Therefore, it has to be linked to the m neighboring

processors in that cluster as well as one processor in each of the s external subcubes to which

the failed processor is connected. This is accomplished using two crossbars, namely the CCB

(Connection Crossbar)and the RCB (Relay Crossbar). The CCBallows a spare to be connected

to each of the 2
m processors in its designated cluster via their spare port. Using the RCB, the

spare is linked to each of the other s clusters to which the host cluster is connected. This

approach can tolerate only a single faulty node per cluster with a significant overhead. It does

not tolerate any link failures. For better fault coverage, spare boards consisting of one spare

processor and S crossbars are suggested. Each spare node then can replace any faulty node

directly. However, the degree of the spare node would effectively be equal to the size of the

hypercube. Furthermore, additional crossbars to interconnect the spares are needed.

Several approaches are proposed by Banerjee et. al. [10, 7, 12] to perform reconfiguration

using spare nodes and spare links. In [12] two spares per 3-cube are assigned (Fig. 13) and the

spare processors form a (d�2)-cube. Upon a node failure, the faulty processor is replaced with

the local spare. The link connecting the spare to the faulty processor and the link connecting

CCB SPARE
COMPUTER

RCB

FROM RCBs
IN

OTHER SUBCUBES

TO CCBs
IN

OTHER SUBCUBES

FROM
PROCESSORS IN
SUBCUBE

16 x 4 7 x 4

3 x 4
3 x 4

16 PROCESSOR
SUBCUBE

(ONE OF EIGHT)

Figure 12: Rennels’ scheme for assigning a spare to a cluster

Spare Node

00000
00001

00011
00010

00110 00111

0010100100

10000

10100

11000

11100

01000
01001

01101

0111101110

01010
01011

01100

Regular Node

Figure 13: Augmented four-dimensional hypercube topology proposed by Banerjee

it to the processor diagonally opposite to the faulty processor are disabled. All other links are

enabled. The spare node (S) which replaces the faulty one sends its address and the address

of the faulty node to all the spare nodes connected to S. The function of each of the other

spares is now that of a simple switch. Consequently each spare determines the node to which

it needs to be connected by using the bitwise XORof its own address, the address of the spare

S, and the address of the faulty node. As an example let us consider Fig. 13 when node 01100

is faulty. The reconfiguration steps are as follows. Replace processor 01100 with the spare

processor 11100. The links between the spare 11100 and nodes 01100 and 01111 are disabled.

All other links are enabled. The spare node 11100 sends its address as well as the address

of the faulty node (01100) to the its neighboring spare nodes (11000 and 10100). The spare

nodes 11000 and 10100 calculate the address of the nodes they should be connected to as:

01100�11100�11000 = 01000 and 01100�11100�10100 = 00100. The spare nodes 11000

and 10100 then act as switches. This system can only tolerate a single node failure.

In [10] Banerjee proposes two schemes to tolerate faulty processors. The first scheme uses

two sets of nodes; P-nodesand S-nodes. P-nodesare the regular nodes of the hypercube. An

S-nodeconsists of a spare attached to a P-node. S-nodesare allocated such that every regular

node is at a Hamming distance of one from a spare node. For example in a 3-cube, spares can

Figure 14: A 3-dimensional reconfigurable hypercube proposed by Alam and Melhem

be attached to nodes 0 and 7. When a node fails, the spare node at a distance of one from the

faulty node is brought on line. The S-node’scommunication module is used to handle both the

communication needs of the faulty node and that of the attached regular node. Messages that

would have been routed to the faulty node, need to be routed to the spare using a routing table

[7]. Therefore, some physical links may experience added traffic which is defined as congestion.

If more than one node fails and the failed nodes are at a Hamming distance of one from an S-

node, a weighted bipartite graph is set up to match the faulty nodes with the spares with the

minimum link dilation. The link dilation in a faulty hypercube is defined by d(v; �(v)) where

v represents the faulty node, �(v) identifies the spare replacing v, and d denotes the distance

between them. Both dilation and congestion are high with this scheme.

In the second method, spare nodes are placed between links connecting pairs of nodes.

For example in a 3-cube, one spare can be placed between nodes 0 and 1, and another spare

between nodes 6 and 7. Similar to the previous scheme, a weighted bipartite graph is used to

assign spares to the faulty nodes. Again the scheme results in high dilation and congestion.

Alam and Melhem [34, 13, 14] using hardware redundancy, developed augmented ap-

proaches to tolerate faulty nodes. In [34, 13], they have proposed two schemes. In the first

one, a single spare is added to each cluster of 4 nodes. If one of the four nodes fails, the spare

replaces it and inherits its address. The e-cuberouting algorithm is no longer valid. The new

routing algorithm takes up to 2d + 2 steps as compared to the d steps of the e-cubealgorithm,

to send a message from a source to a destination. The system can tolerate one faulty node per

cluster. To allow more faulty nodes per cluster, in the second scheme 50% redundancy is used as

shown for d = 3 in Fig. 14. Note that each node can be replaced by one of two spares, making

the spare assignment nondeterministic. Therefore, an even more complicated routing algorithm

is needed. The system can handle two faulty nodes per cluster.

In [14] two spares are assigned per cluster of 4 nodes. Each spare is connected to every

node in its cluster using multiple links (channels). The spares are also connected to form a cube

of their own. Upon a node failure, the faulty node is assigned to one of the spares within the

0110

0100

0000

0010

00SS 0001

0011

0101

01SS 0111 1110

1100

1000

1010

1111

1101

1001

1011

11SS

10SS

Healthy Node

Spare Node

Figure 15: Hypercube of dimension 4 with clusters of dimension 2

cluster. The links of the faulty node are then discarded and the mirror image of the spare in the

other clusters are used to connect the spare to the neighboring nodes of the faulty node. Since

more than one neighbor of a node could be faulty, multiple channels are necessary to connect

the node to the spares of the faulty nodes. Three faults within a cluster is fatal.

In [15] two augmented schemes are proposed to tolerate faulty nodes and/or links. The pre-

sented schemes tolerate a large number of faults without any performance degradation and the

resultant configuration does not affect either the communication or computational algorithms

already developed for the hypercube multiprocessor. In the first scheme a single spare is as-

signed per cluster of nodes (Fig. 15). The allocation of spares is facilitated by using a routing

element on each node similar in concept to the Direct Connect Module (DCM)[25] of Intel

hypercubes. It is assumed that the faulty nodes retain their communication capability. A spare

can logically replace the faulty node within its designated cluster. For example, in Fig. 15, the

spare 01SS may logically replace any one of nodes 0100; 0110; 0111; 0101. Upon detecting a

node failure, the spare activates its link to the faulty node and disables the rest of its links. The

spare’s communication module then sends/receives its data to/from other nodes via the DCM of

the faulty node.

One intra-cluster link failure per cluster can be tolerated. Upon detection of a link failure,

the router of the spare node is used to establish a parallel path to the faulty link. The pro-

cessing elements at the two ends of the faulty link then logically replace their channel routing

elements[15], which connect them to the faulty link with the spare channel routing element.

An inter-cluster link failure is fatal.

In the second scheme, the spares are connected to form a (d � 2)-cube. The approach can

tolerate a larger number of faulty nodes [?], by establishing dedicated paths, in the spare hyper-

cube, between the spare of the faulty cluster and spares of the non-faulty clusters. The approach

can also tolerate both intra-cluster and inter-cluster link failures by establishing parallel path(s)

to the faulty link(s). Fig. 16 demonstrates the reconfiguration of a hypercube upon detection of

faults in links 0� 00 (the link between the nodes 0100 and 0000), 100� and nodes 1011, 1100,

1111

1011

0110

0100

0000

0010

00SS 0001

0011

0101

01SS 0111 1110

1100

1000

1010

1101

1001

11SS

10SS

X

X

Spare Node

Healthy Node

Faulty Node
Faulty LinkX

Figure 16: Reconfiguration of faulty hypercube

1110. Multi-channel communication capability of the spare node 10SS is used to logically re-

place the node 1011 and at the same time establish a path between the nodes 1001 and 1000.

As shown in Fig. 16 the faulty inter-cluster link 0 � 00 is replaced by the path connecting the

nodes 0100; 01SS; 00SS; and 0000. Similarly, spare nodes 01SS and 11SS logically replace

faulty nodes 1100 and 1110, shown by the dark and dashed lines respectively.

6 Conclusions

A faulty hypercube needs to be reconfigured to perform the computational task and commu-

nication as required by the algorithm, with minimal or no performance degradation. The first

approach is to avoid the faulty nodes/links and perform useful computation with the fault-free

nodes. This paper outlines research in the area of embedding topologies such as lower dimen-

sional hypercubes, rings, meshes, and trees in the faulty hypercube. To support the commu-

nication primitives required by the algorithm, a scheme that performs the Global Sum/Global

Broadcast operation in a faulty d-cube is proposed. The second approach is to use hardware

redundancy in the form of spare nodes and links that logically replace the faulty node(s)/link(s).

A survey of various schemes is presented.

References
[1] E. Dilger and E. Amman, “System level self diagnosis in n-cube connected multiprocessor networks,” in

Proc. 14th Int. Symp. on Fault Tolerant Computing, pp. 184–189, 1984.

[2] C. Aykanat and F. Özgüner, “A concurrent error detecting conjugate gradient algorithm on a hypercube
multiprocessor,” in IEEE 17th International Symposium on Fault Tolerant Computing, pp. 204–209, July
1987.

[3] C. Aykanat, F. Özgüner, P. Sadayappan, and F. Ercal, “ Iterative algorithms for solution of large sparse systems
of linear equations on hypercubes,” IEEE Transactions on Computers, vol. c–37, pp. 1554–1568, December
1988.

[4] F. Özgüner and C. Aykanat, “A reconfiguration algorithm for fault tolerance in a hypercube multiprocessor,”
Information Processing Letters, vol. 29, pp. 247–254, November 1988.

[5] B. Becker and H. U. Simon, “How robust is the n-cube?,” Proc. 27th Annu. Symp. Foundations Comput. Sci.,
pp. 283–291, October 1986.

[6] C. C. Li and W. K. Fuchs, “Graceful degradation on hypercube multiprocessors using data redistribution,”
Proceedings of the Fifth Conference on Hypercube Concurrent Computers and Applications, pp. 1446–1454,
April 1990.

[7] P. Banerjee, “Reconfiguring a hypercube multiprocessor in the presence of faults,” Proceedings of the Fifth
Conference on Hypercube Concurrent Computers and Applications, pp. 95–102, 1990.

[8] D. Rennels, “On implementing fault-tolerance binary hypercubes,” Proceedings of the IEEE International
Symposium on Fault Tolerant Computing, pp. 344–349, 1986.

[9] S. C. Chau and A. L. Liestman, “A proposal for a fault-tolerant binary hypercubes architecture,” Proceedings
of the IEEE International Symposium on Fault Tolerant Computing, pp. 323–330, 1989.

[10] P. Banerjee, “Strategies for reconfiguring hypercubes under faults,” Proceedings of the IEEE International
Symposium on Fault Tolerant Computing, pp. 210–217, 1990.

[11] A. Witkowski and R. Lee, “Fault tolerance for the hypercube multiprocessor,” Proceedings of the Fifth Con-
ference on Hypercube Concurrent Computers and Applications, pp. 117–122, 1990.

[12] P. Banerjee, J. Rahmeh, C. Stunkel, V. Nair, K. Roy, V. Balasubramanian, and J. Abraham, “Algorithm-based
fault tolerance on a hypercube multiprocessor,” IEEE Transactions on Computers, vol. 39, pp. 1132–1145,
September 1990.

[13] M. Alam and R. Melhem, “An efficient modular spare allocation scheme and its application to fault tolerant
binary hypercubes,” IEEE Transactions on Parallel and Distributed Systems, vol. 2, pp. 117–126, January
1991.

[14] M. Alam and R. Melhem, “Channel multiplexing in modular fault tolerant multiprocessors,” Proceedings of
the IEEE International Conference on Parallel Processing, pp. I492–I496, 1991.

[15] B. Izadi and F. Özgüner, “Spare allocation and reconfiguration in a fault tolerant hypercube with direct
connect capability,” Proceedings of the Sixth Conference on Distributed Memory Computing Conference,
pp. 711–714, April 1991.

[16] F. Harary, J. P. Hayes, and H. J. Wu, “A survey of the theory of hypercube graphs,” Computers and Mathe-
matics with Applications, vol. 15, pp. 277–289, 1988.

[17] A. Wu, “Embedding of tree networks into hypercubes,” Journal of Parallel and Distributed Computing,
vol. 2, pp. 238–249, April 1985.

[18] Y. Saad and M. H. Schultz, “Topological properties of hypercubes,” IEEE Transactions on Computers, vol. c–
37, pp. 867–872, July 1988.

[19] S. K. Chen, C. T. Liang, and W. T. Tsai, “An efficient multi-dimensional grids reconfiguration algorithm on
hypercubes,” Proc. of 18th Fault Tolerant Computing, pp. 368–373, June 1988.

[20] T. C. Lee, “Quick recovery of embedded structures in hypercube computers,” Proceedings of the Fifth Con-
ference on Hypercube Concurrent Computers and Applications, pp. 1426–1435, April 1990.

[21] S. R. Deshpande and R. M. Jenevein, “Scalability of a binary tree on a hypercube,” Proceedings of the IEEE
International Conference on Parallel Processing, pp. 661–668, 1986.

[22] F. J. Provost and R. Melhem, “A distributed algorithm for embedding trees in hypercubes with modifications
for run-time fault tolerance,” Journal of Parallel and Distributed Computing, vol. 14, pp. 85–89, February
1992.

[23] M. Y. Chan and S. J. Lee, “Distributed fault-tolerant embeddings of rings in hypercubes,” Proceedings of the
Fifth Conference on Hypercube Concurrent Computers and Applications, pp. 834–838, April 1990.

[24] J. Wang and F. Özgüner, “Embeddings, communication and performance of algorithms in faulty hypercubes,”
Proceedings of the Fifth Conference on Hypercube Concurrent Computers and Applications, pp. 1455–1464,
1990.

[25] S. Nugent, “The iPSC/2direct-connect communication technology,” Proceedings of the Third Conference on
Hypercube Concurrent Computers and Applications, pp. 51–60, January 1988.

[26] H. Sullivan, T. Bashkow, and D. Klappholz, “A large scale, homogeneous, fully distributed parallel machine,”
Proceedings of the 15th Annual International Symposium on Computer Architecture, pp. 105–124, March
1977.

[27] T. C. Lee and J. P. Hayes, “Routing and broadcasting in faulty hypercube computers,” Proceedings of the
Third Conference on Hypercube Concurrent Computers and Applications, pp. 346–354, January 1988.

[28] M. Y. Chan and S. J. Lee, “Fault-tolerant embeddings of complete binary trees and rings in hypercubes,”
Technical Report UTDCS-17-89 University of Texas at Dallas, August 1989.

[29] F. S. Roberts, Applied Combinatorics. Englewood Cliffs, NJ: Prentice-Hall, 1984.

[30] Y. Saad and M. H. Schulz, “Data communication in hypercubes,” Tech. Report YALEU/DCS/RR-389, Dept.
of Computer Science, June 1985.

[31] S. L. Johnsson and C. T. Ho, “Optimum broadcasting and personalized communication in hypercubes,” IEEE
Transactions on Computers, vol. C-39, pp. 1249–1268, September 1989.

[32] J. Bruck, “Optimal broadcasting in faulty hypercubes via edge-disjoint embeddings,” Tech. Report RJ
7174(67394), IBM, Computer Science, November 1989.

[33] S. Balakrishnan and F. Özgüner, “An n-step global sum/global broadcast algorithm for n-dimensional faulty
hypercubes,” Tech. Report Dept. of Electrical Engineering The Ohio State University, January 1992.

[34] M. Alam and R. Melhem, “Fault tolerance and reliable routing in augmented hypercube architectures,” IEEE
18th Annual Phoenix Int. Conf. on Computer Communication Proceeding, pp. 19–23, 1989.

