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Abstract: This paper describes different schemes for tolerating faults in hypercube multi-
processors. A study of hypercube algorithms reveals that in many cases, the computations that
require local communication are mapped onto topologies such as meshes or rings and the hyper-
cube topology is used for global data communication. Therefore, a faulty hypercube needs to be
reconfigured to perform both local and global communication as required by the algorithm, ef-
fectively and with minimal performance degradation. Two general approaches can be identified.
The first approach looks into ways of utilizing the healthy processors and links of a hypercube
with faulty nodes/links, for embedding topologies such as lower dimensional hypercubes, rings,
meshes and trees for performing communication. The second approach makes use of hardware
redundancy in the form of spare nodes and/or links and usually requires modifications in the
communication hardware. Augmented hypercubes and spare allocation schemes are described.
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1 Introduction

The area of reconfigurability in the presence of faults is becoming increasingly important with
the emergence of massively parallel architectures. Therefore, fault tolerance is an important
issue that needs to be addressed in the design of node architectures, communication hardware
and software design as well as parallel algorithm developmeni—ddmensional hypercube
multicomputer consists of = 2¢ processors (nodes) interconnected as a Boalezube, with

each processor having only local memory. Inter—processor communication is done by explicit
message passing.

Each processor in é-cube can be represented by-guple(b; 1 ---b;---by) whereb; €
{0, 1}, and a subcube in@&cube can be represented bg-auple{0, 1, x}¢. Coordinate values
“0” and “1” can be referred to asoundcoordinates and “x” afree. A (d — k)—dimensional
subcube (d — k)—subcube) in @—cube is represented bydatuplewith k boundcoordinates



andd-k freecoordinates.

Two general approaches can be identified for fault tolerance in hypercube multiprocessors.
The first approach looks into ways of utilizing the healthy processors and links of a hypercube
with faulty nodes/links, to identify embedded topologies such as lower dimensional hypercubes
(subcubes), meshes, etc. required by the computations. With this approach, some performance
degradation is expected, however special hardware design for fault tolerance is not necessary.
Embeddings are discussed in Section 2 and an algorithm for finding fault-free subcubes is de-
scribed in Section 3.

A distributed fault diagnosis algorithm for identifying the set of faulty processors and links,
when the number of faulty processors and links d is given in [1]. Once the faulty elements
are identified, the multiprocessor and the distributed algorithm running on the multiprocessor[2]
must be reconfigured to run on the available processors. A faulty hypercube needs to be recon-
figured to perform both local and global communication as required by the algorithm, effec-
tively and with minimal performance degradation. A study of hypercube algorithms reveals
that in many cases, the computations that require local communication are mapped onto topolo-
gies such as meshes or rings (grid problems for example [3]) and the hypercube topology is used
for global data communication. Therefore, both local and global communication schemes must
be considered in designing algorithms for faulty hypercubes. The problem of communication in
a faulty hypercube has been addressed by many researchers. A survey of some of these schemes
as well as new results will be presented in Section 4.

The second approach to fault tolerance makes use of hardware redundancy in the form of
spare nodes and/or links and usually requires modifications in the communication hardware.
Although ad-dimensional hypercube with faulty nodes still contains a number of lower dimen-
sional subcubes and therefore can be used to run hypercube algorithms without any modification
[4, 5, 6, 7], one faulty node reduces the dimension of the largest fault-free subctibe to
and 2 faulty nodes can reduce it(@— 2). This has motivated researchers to investigate hard-
ware redundancy and spare allocation schemes [8, 9, 10, 7, 11, 12, 13, 14, 15]. Augmented
hypercubes and spare allocation schemes will be described in Section 5.

2 Embeddings

Embedding problems are concerned with finding mappings between two graphs that preserve
certain topological properties. L&, = (V,, E,) be an application graph ardd, = (V},, E})

be the host graph that represents the interconnection topology of the parallel computer. An
embeddingp of a graphz,, into a graph,, is a function fromV, to V}, [16]. ¢ is an isomorphic
embeddingff G, C G}, and for allu,v € V,, d,(u,v) = dy(d(u), ¢(v)) whered(u, v) is the
distance between verticesandv. Thedilation of ¢ is Max(d(é(u), ¢(v))) for all u,v € V.

Note that an isomorphic embedding is a unit dilation embedding.



Previous research has shown that a number of useful graphs can be embedded isomorphi-
cally into healthy hypercubes. A graghis cubicalif there exists an isomorphic embedding
of GG in the d-cube graph. The focus of the research has been to determine the largest size of
the graphG that can be embedded indacube. For example, in [17] and [18] it is shown that
trees are cubical, and that@ — 1)—height tree can be embedded id-aube isomorphically.
In cases where adjacency cannot always be preserved, embeddings of dilation greater than one
have been determined [19, 20, 21, 22].

In this section, we present an overview of algorithms for embedding trees, rings and meshes
in faulty hypercubes. We discuss embeddings that handle node failures only, unless otherwise
stated. The direction of the research in fault—tolerant embeddings has followed two different
paths depending on the motivating problem.

The first approach [19, 20] is to find embedding functions that primarily minimize the cost
of reconfigurationj.e., the number of node state changes during reconfiguration is minimized.
Generally, such research has focused on distributed algorithms so that the neighbors of the faulty
node can detect the faulty node and locally decide how to remap the faulty node to a healthy
node with minimum reconfiguration cost. Remapping in this way may not always preserve
adjacency, thus increasing the communication cost. Furthermore, the number of nodes utilized
in the embedding is not always maximized. Such algorithms also do not maximize the number
of faults that can be tolerated and exist for single or double fault cases only.

The second direction taken by researchers [23, 24] in fault—tolerant embeddings has been
to preserve the adjacency of nodes;, produce an isomorphic embedding. Hence, for unit
dilation embeddings, the focus has been to determine the maximum size of the embedding so
that fewest number of healthy nodes are wasted (unused). Bounds on the maximum number of
faults that can be tolerated are also obtained.

2.1 Rings

In this section we review the approaches taken in [20] and [23]. We elaborate on the idea used
in [23] since it handles multiple faults and creates the fault—tolerant embedding at run time in a
distributed manner.

The key idea in [20] is to embed the ring so that unused (healthy) nodes are close to all
nodes in the embedding, whereby, an unused node can replace a faulty node in the embedding
easily with a few reconfiguration steps. Fig. 1 (dark lines) illustrates a ring of length eight
embedded in d-cube. In general, the algorithm utilizes a small percentage of the nodes where
the maximum is50%. It can be seen from Fig. 1 that such an embedding can tolerate two
faults and the reconfiguration algorithm requires two state chargesodes1010 and 1000
are added in place of the faulty nod#¥)0 and0001 respectively.

Embedding a ring in d-cube so that the size of the ring is maximized is the approach taken
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Figure 1: Ring embedding minimizing reconfiguration cost

by [23]. The authors devise a distributed algorithm that embeds a ring af’siz&f in ad-cube
where the number of faults < L%J. They use cyclic Gray codes to embed the ring as is done
in healthy hypercubes [18] and vary tluasis ringto skip over the faulty nodes. Fig. 2 shows

a 4-cube with the basis ring embedded (shown by tracing the number in the angle brackets
<> starting at nod®000). The embedding dimension sequence for the basis ringtioube
denoted aD M, = {0,1,2,3}is (0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,3) where following this
dimension sequence from the source node results in the basis ring. Let us also deraik the

of the processor as the location of the processor in the embedded basis ring. The number in the
angle bracket in Fig. 2 represents the rank of the processor. For example, the source has rank
and for the embedding sequenide 1, 2, 3} the neighbor of the source along dimensiohas

rank 2 while the neighbor of the source along dimensiohas rankl6. The first dimension

in DM, is the alternating dimension.€., the dimension traversed most frequently), and is
denoted ad; (d; = 0 in this example). When a faulty node is encountered along the embedded
ring, the algorithm in [23] executes one of the following two cases. In the first case, if the
dimension along which the faulty node is reached is the most frequently occurring dimension
ds(i.e., dimension0 in the example), then the dimension sub-sequegigel’, d;| is replaced

by [d'] whered' # d;. For example, as in Fig. 2 (a), if nodé11 is faulty, then at nodé110
(which is the fifth processor in the ring) the next dimension along the embedding sequence is
changed front to 1 i.e., the dimension sub-sequen@el, 0] is replaced by1]. In the second
case, if the dimension along which the faulty processor is reached is not dimép$sisihsome

other dimensior’, then the dimension sub-sequetég d', d;| is replaced by, i.e., the ring
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Figure 2: Ring embedding maximizing size of ring: (a) Faulty processor reached along dimen-
sion O (b) Faulty processor reached along dimension 2

so far constructed is backtrackedlong d and the ring construction is continued by the previous
processor in the embedding. For example, asin Fig. 2 (b), if processor 0110 is faulty (which
is the processor accessed along dimension 2), the algorithm backtracks to processor 0011 and
replaces the dimension sub-sequence [0, 2, 0] by [2] with the next dimension pointer pointing to
dimension 1.

The algorithm is guaranteed to find a ring embedding (where for each faulty processor, a
healthy processor is removed from the origina embedding) provided that the number of faults
does not exceed L%J . Inthefirst case, when the faulty processor isreached along dy, the faulty
processor has an even rank in the embedding sequence. The algorithm skipsthe faulty processor
and the processor after it in the fault—tolerant embedding. In the second case, when the faulty
processor has an odd rank in the origina embedding sequence, the algorithm skips the faulty
processor and the processor before it in the fault—tol erant embedding. To tolerate multiple faults
the algorithm handles fault distributionswhere (1) no two faults are distance two apart and(2) if
two faults are distance one apart then the first faulty processor encountered in the original basis



ring must have an even rank. The authorsfix the number of faults f, and permute the dimension
sequence of the basisring 2f — 1 times, by defining 2f — 1 embedding dimension sequences
DMy, DM, ..., DMy;_o Where DM; is D M, with dimension 0 and dimension i swapped. The
number of faultsis fixed to not exceed | ! | since the number of permutations cannot exceed
d. It isshown that there exists at least one dimension sequence for which the basis ring satisfies
the above two conditions and is guaranteed to find a fault-tolerant embedding of size > 2¢ —2f.

2.2 Meshes

In a faulty hypercube, an m; x my mesh can be obtained by removing faulty rows and/or
columns in a 24 x 292 mesh, where d; > [logymi], da > [logams], and (d; + dy) < d,
and finding a Gray code ordering of the m; healthy rows and m, healthy columns [24]. An
example of embedding a 5 x 5 mesh in a faulty 6-cubeis illustrated in Fig. 3. An initia
embedding of an 8 x 8 mesh shown in Fig. 3 is done by generating a 2-D Gray code for the
coordinates b5b,03 and bybiby. A 5 x 5 mesh is obtained by removing the faulty rows and/or
columns in Fig. 3 and then by rearranging the rows and columns in Gray code ordering. For
this example, the rows would be arranged as [101, 100, 000, 010, 011] and the columns as
[001, 000, 100, 110, 111]. However, the search for a Gray code ordering of healthy rows and
columns is computationally complex. Pasting of the healthy rows/columns for constructing
either side of the mesh is equivalent to embedding a ring in a faulty d;-subcube or a faulty
d»-subcube respectively and can be constructed using the ring embedding techniques so that a
faulty node is skipped along with a node adjacent to it. In the worst case this results in two
rows or columns of nodes being skipped for every fault, resulting in an embedded mesh of size
(24 — 2z) x (242 — 2y), wherez +y = f.

However, if the hypercube has Direct-Connect Capability25] and assuming that only pro-
cessors can fail, then alinear array of any length m can be formed by first forming alinear array
of length 2¢ in a d-cube using a Gray code sequence and then connecting through the Direct-
Connect Module$DCM’s) of the faulty nodes. An m; x my mesh can be formed similarly
by pasting the healthy rows and columns through the DCM’s of faulty rows/columns (Fig. 3).
In routing messages, if the e-cuberouting algorithm [25, 26] is used (dimension order routing
starting with dimension 0), communication from the nodes of subcube xxx001 (column 00}
to the nodes of subcube xxx110 (column 119 will go through the DCM’s of subcube xxx000
and subcube xxx010; on the other hand, communication from the nodes of subcube xxx110
to the nodes of subcube xxx001 will go through the DCM’s of subcube xxx111 and subcube
xxx101. Thus e-cube communication is not suitable for two reasons. one is that routing is
through a different set of processors in each direction. The more important reason is that a
link connecting 2 processors in the mesh (such as xxx000 and xxx001) may be used, which is
also used for local (nearest neighbor) communication between those 2 processors. In order to
guarantee regular and uninterrupted local communication, messages between two processorsin
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Figure 3: A 5x5 mesh embedded in a6-cube

pasted rows/columns must go through the DCM’s of the deleted rows/columns. In the example
shown in Fig. 3, messages between the nodes of subcube xxx001 (column 00} and the nodes
of subcube xxx110 (column 110 should go through the DCM’s of subcube xxx011 and sub-
cube xxx010 in both directions. Thus the DCM must be designed to route messages in both
directions in accordance with the coordinate sequence used in defining each side of the mesh.

In a specific Karnaugh-map illustration of a2% x 2% mesh, the group of nodesin a column
or arow form a d;-subcube or a d,-subcube, and are represented by a unique d-tuple{0, 1,x}%.
In algorithm MESHDCM[24], we ignore all the free coordinates “x” and consider the “ bound”
coordinates only in deleting faulty rows/columns and thus the group of nodesin arow or acol-
umn are identified by aunique d; -tupleor aunique d,-tuplerespectively. The faulty and healthy
nodes of arow/column have the same representation when they are indicated by considering the
“bound” coordinates only. Therefore, deleting any one faulty node in a row/column is equiv-
alent to deleting the entire row/column. MESHDCMgiven below, first chooses d; coordinates
among the d coordinates to construct the m, side of them; x my mesh, where d, = [logam, |,
and then constructs the m, side of the mesh by using the remaining (d-d, ) coordinates.

Algorithm MESHDCM:
Step 1. If (d —dy) < dyor (22 — f) < (my x my), then exit.

Step 2: Calculate the number of extrarows N, = (2% — m, ), that can be deleted for forming
the m; side of the mesh.



Step 3: Choose d; coordinates among the d coordinates to construct the m; side of the mesh.
Then construct the list F,;, by representing the f faulty elementsin the fault list ' by the
d, coordinates only (| F,, |< 2%), and deleting identical representations of the faulty
nodesin the d; coordinates.

Step 4: If | Fy, |> N, then construct F,,,, by choosing N, elements from thefault list F;, . Else
let N, =| Fy, | and F,,, = F},, and choose any m, columns and exit. The N, elements
in F,,, correspond to the rowsto be deleted represented in the d; coordinates.

Step 5: Construct F,,,,, thelist for constructing the m, side, by deleting from F' the faulty nodes
intherowsin F,,,, then represent the faulty elements by the d, coordinates only deleting
identical representations. Calculate the number of healthy columns N, = 2% — | F,, |.
If N. < msy, then go to Step 6, else exit.

Step 6: Check if al the possible choices of NV, nodes have been used exhaustively in Step 4. If
yes, then go to Step 7, else go to Step 4 for the next trial.

Step 7: Check if all the combinations of choosing d; coordinates among the d coordinates are
examined exhaustively. If yes, then exit, else go to Step 3 for the next trial.

The complexity of Algorithm MESHDCMis analyzed as follows. In the worst case, (ddl)
combinations of coordinates will be tried to construct the m; side of the mesh and for each
choice, there are (‘fgel') ways of deleting rows. Step 3 has a complexity of flog,f and Step
5 has a complexity of (fN, + flog,f). Therefore, the time complexity is O((jl)[flong +
('i‘f;‘)(flong + fN]). If f < d, (N. < d) apessimistic worst case complexity of O(P2d?)

can be derived since (ddl) < P,and (‘ﬁl') < P,where P = 2¢,

An example of embedding a3 x 3 mesh in a4-cube with 3 faulty nodes (f,=0001, f,=0101,
and f3=1100) by Algorithrm MESHDCMis shown in Fig. 4. Since d=4, m;=3, and m,=3,
(d— [logymi]) = 2, [logyms] = 2, and (22 — f) = 13 > (m; x my) =9, the mesh embedding
is possible. Then we have N, = (24-m,) = 1. Since d; = [logamy] = 2, there are () ways of
choosing 2 coordinates among 4 coordinates. As shown in Fig. 4, b3b, is selected first and the
faulty nodes represented in bsb,(elements of Fy, ) are Iy = 00, F, = 01, F3 =11. Intrid 1, F}
isdeleted and F,,,, is{01,00}. Since N. = 2 < ma, trial 2 isrequired. In tria 2, F; isdeleted
and F,,,, is{01,00}. Since N, =2 < mq, trid 3isrequired. Intrial 3, F; is deleted, F,,, is
{11}, F,,,, is{01} and N. = 3 =ms.

2.3 Binary Trees

Another topology that is often used in algorithms is a binary tree. Two significant results re-
garding tree embeddings have emerged. It was shown in [21] that atree of height d, 7, can be
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embedded in a d-cube with maximum dilation 2, i.e., the adjacency of nodes in atree are not
preserved. Here, the motivationis to utilize the maximum number of nodes thus trading off the
increased dilation for a maximum embedding size. The other approach taken in [17, 18] was
to show that a binary tree of height d — 1, T,_,, can be embedded in a d-cube with unit dila-
tion. Here the trade-offs are just the reverse of the previous approach, i.e., preserving adjacency
results in not maximizing the number of nodes used.

Fault—tolerant embeddings have been considered using one of the above two approaches as
the basis embedding. The factors considered in the fault—tolerant embedding are: (1) the num-
ber of faults tolerated, (2) the dilation of the fault—tolerant embedding, (3) the reconfiguration
cost i.e., the number of nodes in the new embedded graph that do not have the same state asin
the basis embedding and (4) the size of the embedding.

In [21] the basis embedding is T; where the maximum dilation is 2 as shown in Fig. 5 (a)
by the dark lines. The approach as seen in Fig. 5 (b) is to use the intermediate node i.e., node
111 (in the multi hop edge of the tree) to replace a faulty node (node 010) and utilize another
tree node (node 001) in the basis embedding as an intermediate node as well as a tree node in
the fault-tolerant embedding. Here the objectiveisto minimize the dilation of the fault—tol erant
embedding (i.e., keep it constant at 2) and not degrade the size of the embedding (i.e., embed
T,). Only one fault istolerated by this scheme. Note also that the new fault—tolerant embedding
resultsin the states of all the nodes being changed as shown in Fig. 5 (b). For example, the root
of the tree is mapped to node 011 instead of 110, the left child to 111 instead of 010, the right



child to 000 (via001) instead of 101 (via111) and so on. Improvementsto thisresult have been
made in [20]. Here, a fault—tolerant embedding with 7}, ; as the basis embedding is used so
that the dilation is minimized (i.e., kept constant at 1) and 2 faults are handled. This approach
has the same penalty as before i.e., a reconfiguration cost of 2¢-! — 1. Furthermore, the height
of the embedding isd — 1 due to the approach taken for the basis embedding.

The other approach taken is to minimize the reconfiguration cost [27, 22]. Here the basis
embedding has unit dilation but the fault—tolerant embedding has a dilation of 2 which is the
penalty paid to obtain areconfiguration cost of 1. In [22] the reconfiguration algorithm involves
two state changes if the faulty nodeis at height 2 in the basis embedding. Both these algorithms
use a mirror image of the faulty node along some dimension as the spare to replace the faulty
node. The authorsin [22] use a distributed algorithm where the faulty node is remapped and
only its parent and children are aware of the change. The authors also extend their algorithm to
tolerate multiple faults. Here they use aform of backtracking where if a node cannot embed its
children, it declaresitself faulty to its parent who must handle the reconfiguration. In the worst
case, the algorithm will backtrack up to the root and the embedding will fail.

The results discussed so far have not considered maximizing the number of faults that can
be tolerated. In [28] the authors show that in a d-cube with d — 1 — [log,d] node and/or link
faults, there existsad — 1 tree which avoids the faults. Then the fault avoiding (d — 1) treeis
constructed in two steps. First, afault-freetree 7" is constructed in which each node has exactly
two or no children and the leaves of 7" are at level d — k or level d — k — 1, where the level of a
node isthe height of the node from theroot and k& = [log,d]| + 2. Second, fault avoiding (k — 1)
trees (i.e., of height £ — 1) are constructed to “attach” onto the leaves of 7" at level d — k and
fault avoiding (k) treesto attach onto theleaves at level d — k — 1. It is shown that a k-subcube
can be associated with the leaves at level d — k and a (k + 1)-subcube with the leaves at level
d—k —1. These subcubes which partition the d-cube have the following properties. Exactly one
of theleaves of 7" and at most two internal nodes of 7" belong to each of the k—cubes and each
of the k-cubes has at most onefault. Exactly one of the leaves of 7" and at most oneinternal
node of 7" belong to each of the (k + 1)—cubes and each of the (k£ + 1)-cubes has at most two
faults. Within such subcubes fault avoiding (& — 1)-trees and k-trees can be constructed.

3 Finding Fault-Free Subcubes

Parallel algorithmsfor hypercubes can be formulated with the dimension d of the hypercube as
a parameter of the algorithm[5] and therefore can be run on a fault-free subcube of the faulty
hypercube. A simple distributed procedure to find the maximum dimension m, of a fault-free
subcube is given in [5]. However, as indicated in [5], this procedure does not always find m,
and furthermore, it does not construct the set of fault—free my;—subcubes. An algorithm which
always finds m, and aso the complete set of fault-free m4-subcubes is presented in [4]. The



results are briefly explained below. The algorithm is formulated to run on a single processor
which would typically be the host or the resource manager in acommercial hypercube system.
Note that there are 2" (z) different (d — k)—subcubes and atotal number of 3¢, 2! (‘f) =391
different subcubes in a d—hypercube.

A commutative and associative intersection operation Iy = {I}¢ on the faulty processorsis
defined asfollowswhere | denotes the intersection of individual coordinates; 010 = 0, 111 =1,
0I1 = ¢, and ¢I0 = ¢I1 = ¢Iq = ¢q. The boundcoordinates (“0”sand “1”s) in the intersection
of all faulty processors indicate the fixedcoordinates among them. Hence, the number of fixed
coordinates, n ¢, givesthe number of (d — 1)-dimensional fault-free subcubes. Finding (d — k)—
dimensional fault-free subcubes for £ > 1 is more complex and will be described later in this
section. The algorithm given in [4] is based on using the Inclusion-Exclusiof29] principle to
count the number of subcubes of a given dimension (d — k), that can be formed in the presence
of faulty processors and links.

Lemma 1[4]: The number of (d — k)—subcubes destroyed by afaulty processor is D; , =
d
(4):

Let Sﬁ{’“ denote the set of (d — k)—subcubes that faulty processor F; belongs to. Subcubes
jointly destroyed by ¢ faulty processors F},, F;,, . . ., F;, or subcubesin S;'ﬁ;’“ N S;‘ﬁ;’“ n--. S;‘ﬁ;’“
can be counted without explicit enumeration of subcubes in each set by using the following
lemma.

Lemma 2[4]: The number of (d — k)—dimensional subcubes jointly destroyed by ¢ faulty
processors F;,, F;,, ..., Fj, is

27

n
Ky w(F,,Fy,...,F,) = (,j) (1)

where n; isthe number of fixed coordinatesin I;,;,...., = Fj IaFj,Iq - - - 1aF;

-

For example, in a5-cube, if the faulty processorsare F1 = (00011) and F;, = (01111), then
Iy = FiI4F, = (0qqll). For k = 2, d — k = 3 the 3—subcubes (xxx11), (Oxxx1) and (Oxx1x)
are destroyed by both F; and F5,. Note that F; and F; each destroy ten 3-cubes.

In counting the number of distinct(d— k)—subcubes destroyed by faulty processors F3, Fs, ....

the common(d — k)—subcubes destroyed should not be includedmore than once in the count
and should be excludedy using the Inclusion-Exclusiof29] principle of counting given below.

Theorem 1[29]: Principle of Inclusion-Exclusion. If N isthe number of elementsin a set
S, the number of elements of S not having any of the properties p, ps, ....., p, iSgiven as:

N@py---py) = N—=3 N(p)+> Npps) — Y Npipjpr)
i=1 i#£] 1,5,k
+-+ (=1)"N(pip2 - - - py) 2
Here, N(p;) denotes the number of objects having property p;, N(p;p;) denotes the number
of objects having both properties p; and p;, and so on. Objects having the same property p;



are elements of the set S;. The second summation on the right hand side of the equation is
over al pairs of sets S;S;(i # j) and therefore enumerates the number of elementsin pairwise
intersections of sets S; and S;, the third summation is over triples S;S;S; and finally the last
term enumerates the number of e ementsin the intersection of sets S, - - - .S,.

This principle can be applied to counting the number of fault-free or available subcubes of
agivendimension (d — k), G4, as described by the following theorem.

Theorem 2[4]: The number of fault-free (available) (d—k)—subcubes, G,;_, inthe presence
of r faulty processors Fi, F», ....F, is

d d
Gor = ok <k> — r<k> + Zdek(FiFj) — Z Kd,k(FiFij)
i#£] 1,5,k
+-+ (1) Ky (F1Fy--- F) (3)

The steps of the algorithm for finding m, are given as:

1. Construct the intersectiah,..,, and compute:; for this intersection. If.; > 1 then exit
with mg=d—1 ande_1 =ny.

2. Construct all pairwise intersections ;, and compute:; for these intersections.

3. Construct intersection§l;,..;,, ,)JIaFy, 2 < ¢ < r, for whichng(/;,..,, ,) > 2 and
ng(li;s,) > 2foralli; € {iy,4,,...,i1}, and compute:, for these intersections.

4. for k=2,3,...do

(a) computek, (F;,, F;,,- - -, F;,) from equation(l), fol < ¢ < r.
(b) computes,; , from equation 3.

(c) exitthe loop itlGy_r #O0withm, =d—kand G,,, = Gg4_.

The complexity of the algorithmis O (%2") which occurs only when al of the intersections have
to be constructed and n; > k for each intersection. With the assumption that » < d[1], the
complexity can be expressed as O (k24).

Oncemy = d— k and G, arefound, an m,;-dimensional subcube can be found as follows.
There are no (d — k)—dimensional fault-free subcubes, if al the 2% combinations of {0, 1}*
are exhaustively covered at each (z) different k-coordinate position combinations by the set
of faulty processors. If any one of the 2* combinations of {0,1}, at any one of the (}) k-
coordinate position combinations, is found to be missing in the list of faulty processors, then
the d—tuple constructed by assigning that missing k—tuple combination to those particular k
coordinate positions and also assigning the remaining d — k coordinates as free (“x”), definesa
(d — k)—dimensional fault-free subcube. The search for missing combination(s) for each faulty



element can be avoided by encoding each k—tupleat a k-coordinate position combination of
faulty elements with a 1-out-of-2* code and then simply using the logic OR operation on these
encoded 2¢—tuples

Consider the following example:

b3 by by by
F,:0000
F,: 0100
F;:0110
F,: 1001

Equation 3 is used to find the number of fault-free 2-cubes as follows:
For k=2 (d-k=2);
112 = (0(]00) nf = 3, 113 = (0(](]0) nf = 2, .[23 = (01(]0) nf = 3,
Ly = (¢00g) ny =2, Iy = (qq0q) ny =1, Iy = (qqqq) ny =0,
I3 = (0qq0) ng=2, Iiy= (g90q) ny =1,
Izs = Inzs = Tiosa = (qqqq) ny =0,
Zig Kar(BiEy) = () + () + () + () = 8
Yk Kaw(FiFFy) = (;) =1
Gy = 22(‘2*) — 4(‘;) +8—1=17.Since G, # 0, the maximum dimension m, = 2.
b1by=11 is one of the missing combinations and therefore the 2-cube xx11 is found as one of
the fault-free 2-cubes.

The upper bound for the complexity of finding the missing combinationis O ((rk + 2k) (,‘j)) ,
when the number of faultsr is not restricted. A simpler bound isderived in [4] for r < d.

4 Communication in Faulty Hypercubes

4.1 Global Sum/Global Broadcast Algorithmsfor Healthy Hypercubes

Efficient communication algorithms [30, 31] have been devised for healthy hypercubes. The
standard algorithm for broadcasting a message to all nodes from a single source was presented
in [26]. This agorithm embeds a Spanning Binomial Tree (SBT) in the hypercube. The Global
Sum (GS) and Global Broadcast (GB) algorithms are the duals of each other.

In the GS operation, data residing in the nodes of ad-cube iscollected in aFina Collecting
Node (FCN). The GS algorithm requires each node to know the address (¢;_; ....c,) of the FCN.
For each stepi, (i = d —1,...,1,0), all nodes with address (c;_;....c;x') receive accumul ated
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Figure 6;: Communication algorithms for a healthy 3-cube (a) GS with dimension sequence
(2,1,0) (b) GB with dimension sequence (0, 1, 2) (c) GB initiated by ISN

data from nodes with address (¢, ;....¢;x') adong dimension i. Hence the data residing in the
d-cube is collected in an i—subcube at the end of each step. Here, powers of {x, 0,1} refer to
concatenation of {x, 0,1} and x° is the empty string. The communication steps are shown in
Fig. 6 (a) for a communication dimension sequence (2, 1, 0) where the FCN is 100. Note that
all nodes require the address of the FCN to determine whether to send or receive the data, or to
not participate at each step.

In the GB operation, dataresiding in an Initial Source Node (1SN) is distributed to all nodes
in the d-cube. Each node requires to know the address (sq_;....s9) of the ISN. For each step
i,(i = 0,1,....,d — 1), al nodes with address (s, ;....s;x') send data to nodes with address
(84-1....5;x') along dimension i. Dataresidesin an (i + 1)—subcube at the end of i steps. The
communication steps are shown in Fig. 6 (b) for acommunication dimension sequence (0, 1, 2)
where the ISN is 100.

The GB operation is initiated by an ISN. If a d-bit control word is sent by a source node
to areceiving node indicating how the receiver should continue broadcasting the message, then
nodes other than the ISN do not need to know the address of the source. If an intermediate
node receives a message with the i** bit of the control word set to 1 (scanning from left), then
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Figure 7: Global broadcast in afaulty hypercube from (a) active ISN (b) unsafe ISN

it sends a copy of the message along dimension ;. Each node repeats this step as many times
as the number of 1'sin the control word. Fig. 6 (c) illustrates this algorithm where the word
in the angle brackets (<>) is the control word received by the node. The ISN is 100 and the
communication dimension sequenceis (2,1, 0).

4.2 Fault-Tolerant Global Broadcast Algorithms

The motivation in fault—tolerant communication algorithm design has been to devise schemes
that take the same number of communication steps as the algorithms for healthy hypercubes
since an increase in the number of communication steps is a heavy penalty to pay in message
passing systems.

Several researchers [32, 27] have investigated GS/GB algorithms for faulty hypercubes. In
[32] the GB is performed by constructing a family of d link-digoint (a link is unidirectional
and an edge consists of two directed links) spanning trees of height d rooted at the source node.
This algorithm tolerates [4] — 1 edge faults and takes d communication steps.

Broadcasting in faulty hypercubes using a d-bit control word was considered in [27], where
an unsafenode is defined as one that has at least two faulty or unsafe neighbors. A node that is
not unsafe is defined as an activenode. An algorithm that takes O (#*) communication stepsis
used to determine the unsafe nodes in a d-cube. The authors show that the GB algorithm takes d
communication stepsif the source nodeis not unsafe or faulty (i.e., active) and d + 1 stepsif the
source is unsafe provided that the number of node faullts does not exceed [4]. At each step of
the broadcast an active node is assigned to broadcast in a subcube, the subcube size indicated by
the number of 1'sin the control word received by the active node. The control word is scanned
from left to right. The algorithm sends a message from an active node to an active neighbor




along dimension ¢, if the corresponding bit i of the control word is 1; it sends a message to an
unsafeneighbor along dimension ¢ only if bit i of the control word is 1, and al other bits are
0’s. In other words, it broadcasts to all unsafe nodes only in the d** step of the GB agorithm.
Fig. 7 (a) illustrates a 3-cube with two faults performing the GB from an active ISN 111 in 3
steps. The number in the square denotes the communication step number and the sequence in
the angle brackets (<>) is the control word received by the node. The ISN generates a control
word of < 111 > and first sends along dimension 3 with the control word altered to < 011 >
to reflect the subcubes 1xx and Oxx in which nodes 111 and 011 must continue to broadcast.

If the ISN is an unsafe node, then the ISN sends the message to the first active neighbor
obtained by scanning the control word from left to right. This active node acts as a new ISN
and performs the GB as before except that no message is sent back to the original unsafe I1SN.
Fig. 7 (b) illustrates the cube performing the GB from an unsafe ISN i.e., node 100. Note that
in step 4 node 101 does not send the message to 100 since 100 isthe original ISN.

4.3 Global Sum for Faulty Hypercubes

In Section 4.1 a d-step algorithm for the GS operation in healthy hypercubes was described.
The GS [24] can aso be collected by performing a partial Global Sum operation in 2¢ disjoint
(d — 7)-subcubesin parallel, collecting the partial global sum in nodes that form an i-subcube.
For example, in a 4-cube, for i = 1, splitting the 4-cube along dimension 3, results in two
digoint 3-cubes Oxxx and 1xxx. Each subcube can perform apartial GSin 3 steps collecting in
nodes 0000 and 1000 respectively, which are the nodes of the 1-cube x000. Then, these 2! = 2
nodes of the 1-cube x000 perform a GS operation in 1 step. Note that we can split the cube
into digoint subcubes of different sizes and yet apply the same principle. For example, the
3-cube 1xxx obtained earlier can be split along dimension 2 into two 2-cubes 10xx and 11xx.
Now, the partial GS can be performed in 2 stepsin the three subcubes S; = 0xxx, S, = 11xx,
and S; = 10xx in parallel, with nodes (0000 and 0100 € S;), node (1100 € S,) and node
(1000 € S3) collecting the partial results. These are nodes of the 2-cube xx00 and can perform
aGSin 2 steps. Note that in general, the dimension sequence of the partial GS can be different
for the digoint cubes. Thistechnique can be used in faulty hypercubes where the d-cubeis split
into good and faulty partners as explained next.

Consider the 4-cube shown in Fig. 8(a) with 3 faulty nodes at f; = 0010, f, = 1100, and
f3 = 1111. Theideaisto try to split the 4-cube into two 3-cubes, one healthy and the other
containing all faulty nodes. If such a split can be found, then the healthy nodes in the faulty
cube will send to the adjacent nodes in the good cube in one step and the GS will be performed
in the good cube in d — 1 communication steps. A (d — 1)—cube containing all of the faulty
nodes can be found by applying the intersection operation Iy = {I}9 defined in Section 3
(0I0=0,111=1,011 = q,qI0 = qI1 = qlq = ¢). The bound coordinates in the intersection
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of all faulty processors indicate the fixed coordinates among them, and can be used to split the
cube. For the 4-cube considered, .5 = filf2lfs = qqqq, and therefore a good-faulty
subcube split cannot be found. Hence the 4-cube is split along any dimension into two faulty
3-cubes. Fig. 8(b) shows the first split along dimension 3 resulting in two 3-cubes 1xxx and
Oxxx where f, and f; are contained in 1xxx and f; is contained in Oxxx. Since Oxxx contains
only one fault, we can choose any dimension, for example dimension 1, to split it into good-
faulty partners 0x0x and Ox1x respectively. 1xxx hasto be split again and dimension 2 which
is a bound coordinate of the intersection (Z, 3 = 11¢q ) is chosen. This results in good-faulty
partners 10xx and 11xx respectively. Now, the healthy nodes in the faulty subcubes can send
their data to their partner in the good subcubes in paralel in 1 step. The partial GS's for the
subcubes 0x0x and 10xx can be performed in parallel in 2 steps. In order to collect the results
of the 2 partial GS'sin one node in the 4th step, the nodes collecting the partial GS'sin each 2-
cube must be adjacent, i.e., the collecting nodes containing the result of the partial GS's must be
in the same 1-cube, so that the final GS can be collected in 1 step. Such collecting nodes can be
determined by performing aconsistency operation on the healthy (collecting) subcubesfound in
the last split. For the two collecting cubes 10xx and 0x0x in Fig. 8(a), the collecting nodes can
be found by performing a consistencyperation &, = {&}¢ defined as follows: 0& 0=0& x=0,
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1& 1=1&x=1, 0& 1=—& 0=—& 1=—& x=—, x&x=X. The candidate nodes for each collecting cube
are obtained by replacing the “ —" coordinates of the result with the corresponding coordinate
valuesin the collecting cube. For this example, 0x0x&10xx = —00x. The candidate collecting
nodes (000x € 0x0x) and (100x € 10xx) form a1-cube called the Fina Collecting Cube (FCC).
Fig. 8(b) showsthe splitting operation. The split treeisabinary tree where each node represents
asplit and has associated with it adimension d; used at that split to partition the cube. Note that
the split tree does not include the edges of the tree corresponding to the last splitting operation
to obtain the good-faulty partners (shown in dotted lines) since these edges do not have a node
at either end. A leaf of the split tree is a node of degree 1, while an internal nodeis a node of
degree 2 (root) or 3.

Now consider the same example but with dimension 2 chosen to split both subcubes 0xxx
and 1xxx into good-faulty partners. The split tree in Fig. 9 shows that the 4-cube can be split
resulting in two good 2-cubes 01xx and 10xx, but partial collecting nodes that are adjacent
cannot be found.

4.4 d-Step Fault-Tolerant GSGB Algorithm

By using a uniquedimension at each split, the GS/GB operation can always be performed in d
stepsif the number of faultsis < (%1 . Having split the cube, the data from each healthy nodein
the faulty subcube is sent to its partner in the good subcube along adimension i, wherei isthe
dimension used at the final split to obtain a good-faulty pair. Thisis donein one step. Now all
the dataresidesin the good subcubes. The following Depth First Search (DFS) operation on the
split tree yieldsthe dimension set D,. of the FCC. Initially all the nodes of the tree are uncolored
and D, isempty. When anodeisvisited, if it is not colored, and it isnot a leaf node, then it is
colored and the dimension associated with that node is added to set D,.. The dimension of the
FCC, which isthe number of internal nodesin the split tree is denoted as k wherek = | D, |.
Note that the dimension set of the FCC can aso be obtained by the & operator applied to the
good subcubes. The datain each good subcubeis collected in parallel by apartial GS performed
ind— k — 1 steps. Let the set of free coordinates of the collecting good subcubes be denoted
by D,; wherei is the i** good subcube. The dimension sequence along which to perform the



partial GS operation in the i good subcube is determined by deleting from D,; the dimensions
intheintersection of D, and D.. By construction we can show that the collecting node(s) in the
good subcubes form a k& dimensional Final Collecting Cube (FCC). The GS operation can then,
be performed on the FCC in k steps to collect the data in one node. Hence, the entire operation
takes d steps. The formal proofs can be found in [33].

The following example illustrates the methodology used to determine the FCN and the
dimension sequence along which to perform the first communication step from faulty to good
subcubes, and thereafter the partial GS in each good subcube.

Fig. 10 shows a 5-cube with 3 faults f; at 00100, f, at 00010, and f3 at 11000. Fig. 11
shows the split tree for a chosen split. The FCN that collects the result of the GS operation
is determined from the constructed split tree. Each node (circle) represents a subcube and the
number inside the circle represents the dimension along which that cube is split. First the cube
is split along dimension 4, giving rise to two faulty cubes 1xxxx and Oxxxx. Next, the first
faulty subcube (1xxxx) is split along dimension 3 and the other faulty subcube (0xxxx) aong
dimension 2. The first split gives rise to a good-faulty pair where the good subcube is denoted
by G, = 10xxx. The second faulty subcubeis split into two faulty subcubes 0x1xx and 0x0xx.
Finally, the faulty subcubes 0x1xx and 0x0xx are split along dimensions 1 and 0 respectively
to give good subcubes GG, = 0x11x and GG3 = 0x0x1 respectively. Note that thisis only one of
the d! waysto split the 5-cube into good-faulty partners where a unique dimension is chosen for
each split.

Using the DFS algorithm on the split tree, {D.} = {4,2}. The dimension of the FCC, is
k = | D.| = 2. TheFCC isgiven by x0x11 where the fixed dimensions correspond to
the dimensions that result in the good-faulty splits, and the free dimensions correspond to the
internal nodes of the split tree.

Any node contained in the FCC can be chosen asthe FCN. Fig. 10 shows the GS operation
for the 5-cube with the FCN being 00111. The number i in the square denotes the communica-
tion step i involved in the operation. In the first step, each node in the good subcubes receives
data from its healthy partner in the faulty subcubes along the dimension used to perform the
final split. Nodes in GG; receive from their partners along dimension 3, while nodes in G, and
(3 receive from their partners along dimensions 1 and 0 respectively. Thistakes one communi-
cation step. The partial GS in each good subcube is performedind — k — 1 stepsi.e., 2 in this
case.

The dimension sequence D; along which to perform the partial GS operation in the i
good subcube must satisfy the condition D; N D, = ¢ . Hence, in G; the GSis performed along
dimensions 0 and 1, in G5 along 0 and 3, and in G5 along 1 and 3. The action to be taken by
anodei.e., send, receive, or not participate is determined as in the healthy GS algorithm using
the address(es) of the collecting node(s) in each subcube. The FCC isx0x11. The collecting
nodesin G; are 10011 and 10111, the collecting nodein GG is00111, and the collecting nodein
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Figure 11: Split tree for the faulty 5-cubein Fig.10

G31s00011. After the partial collection in the collecting nodes, the GS operation is performed
on the FCC in 2 steps collecting the data in the FCN. The total number of steps taken is 5 (1
step for sending from faulty to good subcubes + 2 steps to perform the local partial GSin each
good subcube + 2 stepsto perform the GSin the FCC).

5 Fault-Tolerant Hypercubes

As mentioned in Section 1, faulty nodes can substantialy reduce the dimension of the largest
fault-free available subcube. To preserve the dimensionality of the faulty hypercube, hardware
redundancy and spare allocation schemes[8, 9, 10, 7, 11, 12, 13, 14, 15] have been investigated.

A hardware scheme was first proposed by Rennels [8]. Here, N = 2¢ processors are
grouped into S = 2° clusters of M = 2™ processors each, where d = m + s and one spare
is assigned per cluster. Crossbar switches are employed to add spare nodes via the additional
port in dimension (d + 1) (Fig. 12). If aprocessor failsin a cluster, the spare replacing it must
be able to communicate in d dimensions. Therefore, it has to be linked to the m neighboring
processors in that cluster as well as one processor in each of the s external subcubes to which
the failed processor is connected. This is accomplished using two crossbars, namely the CCB
(Connection Crossbagnd the RCB (Relay Crossbar)'he CCBallows a spare to be connected
to each of the 2™ processors in its designated cluster via their spare port. Using the RCB the
gpare is linked to each of the other s clusters to which the host cluster is connected. This
approach can tolerate only a single faulty node per cluster with a significant overhead. It does
not tolerate any link failures. For better fault coverage, spare boards consisting of one spare
processor and S crossbars are suggested. Each spare node then can replace any faulty node
directly. However, the degree of the spare node would effectively be equal to the size of the
hypercube. Furthermore, additional crossbars to interconnect the spares are needed.

Several approaches are proposed by Banerjee et. al. [10, 7, 12] to perform reconfiguration
using spare nodes and spare links. In [12] two spares per 3-cube are assigned (Fig. 13) and the
gpare processorsform a (d — 2)-cube. Upon anode failure, the faulty processor is replaced with
the local spare. The link connecting the spare to the faulty processor and the link connecting
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it to the processor diagonally opposite to the faulty processor are disabled. All other links are
enabled. The spare node (.S) which replaces the faulty one sends its address and the address
of the faulty node to all the spare nodes connected to S. The function of each of the other
gparesis now that of a simple switch. Consequently each spare determines the node to which
it needs to be connected by using the bitwise XORof its own address, the address of the spare
S, and the address of the faulty node. As an example let us consider Fig. 13 when node 01100
is faulty. The reconfiguration steps are as follows. Replace processor 01100 with the spare
processor 11100. The links between the spare 11100 and nodes 01100 and 01111 are disabled.
All other links are enabled. The spare node 11100 sends its address as well as the address
of the faulty node (01100) to the its neighboring spare nodes (11000 and 10100). The spare
nodes 11000 and 10100 calculate the address of the nodes they should be connected to as:
0110011100 11000 = 01000 and 01100 11100 10100 = 00100. The spare nodes 11000
and 10100 then act as switches. This system can only tolerate a single node failure.

In [10] Banerjee proposes two schemes to tolerate faulty processors. The first scheme uses
two sets of nodes; P-nodesand S-nodes P-nodesare the regular nodes of the hypercube. An
S-nodeconsists of a spare attached to a P-node S-nodesre allocated such that every regular
node is at a Hamming distance of one from a spare node. For example in a 3-cube, spares can



Figure 14: A 3-dimensional reconfigurable hypercube proposed by Alam and Melhem

be attached to nodes 0 and 7. When a node fails, the spare node at a distance of one from the
faulty node is brought on line. The S-node’scommunication moduleis used to handle both the
communication needs of the faulty node and that of the attached regular node. Messages that
would have been routed to the faulty node, need to be routed to the spare using a routing table
[7]. Therefore, some physical links may experience added traffic which isdefined as congestion
If more than one node fails and the failed nodes are at a Hamming distance of one from an S-
node a weighted bipartite graph is set up to match the faulty nodes with the spares with the
minimum link dilation. The link dilation in a faulty hypercube is defined by d(v, ¢(v)) where
v represents the faulty node, ¢(v) identifies the spare replacing v, and d denotes the distance
between them. Both dilation and congestion are high with this scheme.

In the second method, spare nodes are placed between links connecting pairs of nodes.
For example in a 3-cube one spare can be placed between nodes 0 and 1, and another spare
between nodes 6 and 7. Similar to the previous scheme, a weighted bipartite graph is used to
assign spares to the faulty nodes. Again the scheme results in high dilation and congestion.

Alam and Melhem [34, 13, 14] using hardware redundancy, developed augmented ap-
proaches to tolerate faulty nodes. In [34, 13], they have proposed two schemes. In the first
one, asingle spare is added to each cluster of 4 nodes. If one of the four nodes fails, the spare
replaces it and inherits its address. The e-cuberouting algorithm is no longer valid. The new
routing algorithm takes up to 2d + 2 steps as compared to the d steps of the e-cubealgorithm,
to send a message from a source to a destination. The system can tolerate one faulty node per
cluster. To allow more faulty nodes per cluster, in the second scheme 50% redundancy isused as
shown for d = 3 in Fig. 14. Note that each node can be replaced by one of two spares, making
the spare assignment nondeterministic. Therefore, an even more complicated routing algorithm
isneeded. The system can handle two faulty nodes per cluster.

In [14] two spares are assigned per cluster of 4 nodes. Each spare is connected to every
nodeinitscluster using multiple links (channels). The spares are also connected to form a cube
of their own. Upon a node failure, the faulty node is assigned to one of the spares within the
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cluster. The links of the faulty node are then discarded and the mirror image of the spare in the
other clusters are used to connect the spare to the neighboring nodes of the faulty node. Since
more than one neighbor of a node could be faulty, multiple channels are necessary to connect
the node to the spares of the faulty nodes. Three faults within a cluster isfatal.

In [15] two augmented schemes are proposed to tolerate faulty nodes and/or links. The pre-
sented schemes tolerate a large number of faults without any performance degradation and the
resultant configuration does not affect either the communication or computational algorithms
already developed for the hypercube multiprocessor. In the first scheme a single spare is as-
signed per cluster of nodes (Fig. 15). The alocation of sparesis facilitated by using a routing
element on each node similar in concept to the Direct Connect Module (DCM)25] of Intel
hypercubes. It is assumed that the faulty nodes retain their communication capability. A spare
can logically replace the faulty node within its designated cluster. For example, in Fig. 15, the
spare 015'S may logically replace any one of nodes 0100, 0110,0111,0101. Upon detecting a
node failure, the spare activatesitslink to the faulty node and disables the rest of itslinks. The
spare’s communication modul e then sends/receivesits data to/from other nodes viathe DCM of
the faulty node.

One intra-cluster link failure per cluster can be tolerated. Upon detection of alink failure,
the router of the spare node is used to establish a parallel path to the faulty link. The pro-
cessing elements at the two ends of the faulty link then logically replace their channel routing
elementg15], which connect them to the faulty link with the spare channel routing element
Aninter-cluster link failureisfatal.

In the second scheme, the spares are connected to form a (d — 2)-cube. The approach can
tolerate alarger number of faulty nodes[?], by establishing dedicated paths, in the spare hyper-
cube, between the spare of the faulty cluster and spares of the non-faulty clusters. The approach
can also tolerate both intra-cluster and inter-cluster link failures by establishing parallel path(s)
to the faulty link(s). Fig. 16 demonstrates the reconfiguration of a hypercube upon detection of
faultsin links 0 — 00 (the link between the nodes 0100 and 0000), 100— and nodes 1011, 1100,
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1110. Multi-channel communication capability of the spare node 105'S is used to logically re-
place the node 1011 and at the same time establish a path between the nodes 1001 and 1000.
As shown in Fig. 16 the faulty inter-cluster link 0 — 00 is replaced by the path connecting the
nodes 0100, 0155, 00S.S, and 0000. Similarly, spare nodes 015'S and 1155 logically replace
faulty nodes 1100 and 1110, shown by the dark and dashed lines respectively.

6 Conclusions

A faulty hypercube needs to be reconfigured to perform the computational task and commu-
nication as required by the agorithm, with minimal or no performance degradation. The first
approach is to avoid the faulty nodes/links and perform useful computation with the fault-free
nodes. This paper outlines research in the area of embedding topol ogies such as lower dimen-
siona hypercubes, rings, meshes, and trees in the faulty hypercube. To support the commu-
nication primitives required by the algorithm, a scheme that performs the Global Sum/Global
Broadcast operation in a faulty d-cube is proposed. The second approach is to use hardware
redundancy in the form of spare nodes and linksthat logically replace the faulty node(s)/link(s).
A survey of various schemes is presented.
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