
ESA ’03 International Conference 261

Low-Power Dynamic Scheduling in Heterogeneous
Systems

Saumya Uppaluri, Baback Izadi and Damu Radhakrishnan

Department of Electrical and Computer Engineering
State University of New York - New Paltz

75 South Manheim Blvd.
New Paltz, NY 12561, U.S.A.

uppalu52@newpaltz.edu, bai@engr.newpaltz.edu,
damu@engr.newpaltz.edu

Abstract: This paper develops a matching and
scheduling algorithm that accounts for both the
execution time and the power consumption of the
application. The power consumption of different
processors on a variety of tasks is taken into account
using a proposed incremental cost function, which is
utilized in a low-power dynamic-level scheduling
algorithm. This cost function is independent of the
topology and can be adjusted to the desired level in such
a way that the power consumption of the tasks would
effect scheduling.

Keywords: Heterogeneous computing, precedence
constrained tasks, matching, scheduling, low power.

1. Introduction

A heterogeneous distributed computing system
is a suite of diverse high-performance machines
interconnected by a high-speed network. They have
promising high-speed processing of
computationally intensive applications with diverse
computation needs. One of the challenges in
heterogeneous computing is to develop matching
and scheduling algorithms that assign the tasks of
the application to the processors [1, 2]. Therefore,
researchers have proposed many static, dynamic
and even hybrid algorithms to minimize the
execution time of applications running on a
heterogeneous system [3, 4, 5, 6, 7, 8]. Another
challenge facing distributed computing community
has become power consumption of parallel
machines [9]. A study by Argonne National
Laboratory has indicated that a 2.5 petaflop
supercomputer, made of over a hundred thousand

CPUs, will be available by 2010. The study predicts
that such a system will cost $16 million and would
require 8 mega watts of power to operate at a cost
of about $8 million per year. Hence, soaring energy
prices and rising concern about the environmental
impact of electronics systems highlight the
importance of incorporating low power design
schemes at all levels of such systems.

At the system level, some researchers have
examined energy efficient scheduling algorithms to
reduce power consumption [10, 11, 12, 13, 14].
Static techniques, such as synthesis and compilation
for low power, are applied at design time [15]. In
contrast, dynamic techniques use runtime behavior
to reduce power when systems are serving light
workloads or are idle [16]. For example, one such
scheme is dynamic voltage scaling (DVS), where
the supply voltage at runtime is changed as a
method of power management. Reducing the supply
voltage is an effective way of reducing the power
consumption, but we pay a speed penalty for
voltage reduction. The impact of reducing Vdd on
the delay is shown in Figure 1 [17] for a variety of
different logic circuits, ranging in size from 56 to
44,000 transistors and spanning a variety of
functions. The figure illustrates that on a single
processor, the circuit-delay degrades by a factor of
two when the supply voltage is dropped from 5V to
3V. This reduction in supply voltage reduces the
energy usage by a factor of 2.89 [17]. Figure 2
depicts power versus delay for the circuits in Figure
1. Figures 1 and 2 demonstrate that as we reduce
voltage, the circuit’s power and energy usage
decrease and the circuit’s delay increases.
Moreover, Figure 2 shows that the required energy

mailto:uppalu52@newpaltz.edu
mailto:bai@engr.newpaltz.edu
mailto:damu@engr.newpaltz.edu

ESA ’03 International Conference 262

for a circuit would be different depending on power
or delay requirement. Therefore, one can specify
the maximum tolerated power and determine the
required delay within the circuit and vice versa.

At the system level, in a homogeneous system,
different tasks would utilize a combination of
different circuits and therefore exhibit similar
characteristics to Figure 2. Hence, such a
characteristic per task for a processor can be
measured. In a heterogeneous system, each task
exhibits different power-delay characteristics per
processor.

Figure 1: Normalized delay versus supply voltage for
various experimental circuits.

Figure 2: Normalized power versus normalized delay for
various experimental circuits.

 In this paper, we consider scheduling tasks in a
heterogeneous distributed system, where processors
have different speed and power characteristics. Our
scheduling algorithm uses an efficient cost function,

which, in addition to execution time, considers the
power consumption of tasks per processor; we
assume that power-delay characteristics are known
for each task within a processor.
 The rest of the paper is organized as follows. An
overview of an existing Dynamic Level Scheduling
algorithm is given in Section 2. The Low power
Dynamic Level Scheduling algorithm is explained
in Section 3. Section 4 evaluates the effects of the
proposed low-power cost function on the
scheduling heuristic. Finally, concluding remarks
are given in Section 5.

2. DLS Algorithm

In this section, for completeness, we give a brief
overview of the dynamic level scheduling (DLS)
algorithm proposed by Sih and Lee in [18]. Let us
consider M heterogeneous processors and N tasks
of an application. The DLS algorithm is a compile
time, static list scheduling heuristic. It allocates a
Directed Acyclic Graph (DAG) structured
application to a set of heterogeneous machines to
minimize the execution time of the application. The
algorithm also considers the interprocessor
communication overheads when mapping
precedence graphs onto multiple processor
architectures. At each scheduling step, the DLS
algorithm chooses the next task to schedule and the
processor on which the task is to be executed. This
is done by finding the ready task and processor pair
that have the highest dynamic level. The dynamic
level of a task-processor pair is given by the cost
function specified by Equation 1. Each term in the
cost function is expressed in time units. The terms
collectively specify the priority of executing tasks
to minimize the overall execution time as specified
below. The dynamic level, denoted by DL(Ni,Mj,Σ)
reflects how well the task and processor are
matched at state Σ. Σ indicates the state of the
processing resources (previously scheduled tasks)
and the state of the communication resources
(previously scheduled data transfers). The static
level of task, denoted by SL(Ni), is the largest sum
of execution times along any directed path from
task Ni to an endtask of the graph, over all endtasks
of the graph. The static level component indicates
the importance of the task in the precedence
hierarchy, giving higher priority to the task located
further from the terminus. DA(Ni,Mj,Σ) is defined as

ESA ’03 International Conference 263

the earliest time that all data required by task is
available at processor at state Σ. TF(Mj,Σ)
represents the time that the last task assigned to the
jth processor finishes execution. The maximization
term max[DA(Ni,Mj,Σ),TF(Mj,Σ)] reflects the
availability of the processing and communication
resources, penalizing the task-processor pairs that
incur large communication costs. Hence, a task-
processor pair with an earlier starting time will have
higher scheduling priority. ∆(Ni,Mj) accounts for the
processor speed differences, adding priority to the
processors that execute the task quickly, and
subtracting priority from processors that execute
the task slowly. The higher the value of the cost
function, DL(Ni,Mj,Σ), the more beneficial the task
processor pair is, and as such, the more likely it is
that processor Mj should be used for executing task
Ni.

)M,∆(N Σ)],TF(M
Σ),,M, DA(N max[)SL(N Σ),M,DL(N

jij

jiiji

+

−=

 where the variables are defined as:
 iN = ith task
 jM = jth processor
 Σ = State of time
 Σ),M,DL(N ji = Dynamic level of a
 task- processor
)SL(Ni = The static level of a task
 Σ),M,DA(N ji = Data ready time

 Σ),TF(M j = Processor ready time

)M,∆(N ji = Accounts for the varying
 processor speeds

Example 1: Let us consider an application to be
scheduled onto a two-processor heterogeneous
system. The processors are assumed to be
interconnected by a full-duplex link. Figure 3 shows
the acyclic precedence expansion graph (APEG) of
the application. The numbers over the arrows
represent the communication time. Execution time
and power consumption of each task within each
processor is given in Table 1. Note that static level
of each task is calculated based on median
execution time of the task among different
machines. For example SL(E) is calculated along
the H→G→E path as 9+4.5+3.5=17.

Figure 3. Acyclic precedence graph of an application.

The DLS algorithm selects a task-processor pair

using the following steps. First, since tasks A, B, C
and D are ready for execution on either processors
M0 or M1, the dynamic levels of these tasks on M0
and M1 are evaluated using Equation 1 and the
result is shown in Table 2. Since task B on

Table 1: Characteristics of the acyclic precedence graph

processor M0 has the highest dynamic level it is
scheduled, as shown in Figure 4. Next, as task B is
scheduled, task E can also be considered for
scheduling. Hence, the algorithm evaluates the
dynamic level of tasks A, E, C, and D, as shown in
Table 3. Note that during these evaluations,
TF(M0,Σ)=2 and DA(E,M0,Σ)=2 since both tasks E
and C would reside on the same processor.
Therefore, they require no communication
overhead. On the other hand, DA(E,M1,Σ)=2+2=4,
since the result of task B from processor M0 needs
to be sent to processor M1. Since task E has the
highest dynamic level on processor M0, it is
scheduled on processor M0.
 Similarly, the algorithm makes other task-
processor assignments. Figure 4 shows the resulting
scheduling progressions using the DLS algorithm.

Task- N
i

M
0 Exec.

Tim
e-T

0 (i)

M
1 Exec.

Tim
e -T

1 (i)

M
edian Exec

Tim
e

Static Level
SL(N

i)

Pow
er

C
onsum

ed on
M

0 -P
0 (i)

Pow
er

C
onsum

ed on
M

1 -P
j (i)

A 2 3 2.5 11.5 4.25 2.5
B 2 3 2.5 19.5 5.25 2.6
C 4 6 5 8.5 2 1.5
D 5 4 4.5 4.5 1.5 2.4
E 3 4 3.5 17 6.2 2.7
F 3 4 3.5 3.5 4.5 2.6
G 4 5 4.5 13.5 2.1 1.75
H 10 8 9 9 1 1.2

(1)

2

3

D

B G

5

6 4
E

A

F

H

C

ESA ’03 International Conference 264

 Table 2: Calculation of dynamic level in step1.

 Table 3: Calculation of dynamic level in step2.

Figu

3. Low P

Similar
scheduling
with the
power co
following

),(),()],(
),,,(max[)(),,(

jijij

jiiji

MNEMNMTF
MNDANSLMNDL

−∆+Σ

Σ−=Σ

The first three terms of Equation 2 are taken

directly from Equation 1. These terms promote the
best-suited resources to tasks per the DLS
algorithm. The term E(Ni, Mj) is a measure of how
much a given scheduling decision will contribute to
the power consumption of tasks and vice versa. A
larger value of E(Ni, Mj) increases the scheduling
priority for task Ni on processor Mj. Hence, we
define E(Ni, Mj) as

 E(Ni, Mj) = α[Tj(i) – Tave_j(i)] (3)

α in equation 3 is a constant factor, which
determines the relative importance of power in the
scheduling process. Tj(i) is the execution time of
task Ni on processor Mj using Pj(i), where Pj(i)) is
the power used by task Ni on processor Mj. Tave_j(i)
is the execution time of task Ni on processor Mj
using Pave(i), where Pave(i) is the average power
used by task Ni on all processors. Tave_j(i) is
obtained from the power versus execution time
characteristic graph. Figures 5 and 6 show examples
of power-delay characteristics of a set of tasks on
two processors.

3.1 LDLS Algorithm

Based on Equation 2, we have developed the
following Low-power Dynamic Level Scheduling

Processor M0
N SL DA TF ∆ DL

A 11.5 0 0 0.5 12
B 19.5 0 0 0.5 20
C 8.5 0 0 1 9.5
D 4.5 0 0 -0.5 4

Processor M1
A 11.5 0 0 -0.5 11
B 19.5 0 0 -0.5 19
C 8.5 0 0 -1 7.5
D 4.5 0 0 0.5 5

Processor M0
N SL DA TF ∆ DL
A 11.5 0 2 0.5 10
E 17 2 2 0.5 15.5
C 8.5 0 2 1 7.5
D 4.5 0 2 -0.5 2

Processor M1
A 11.5 0 0 -0.5 11
E 17 4 0 -0.5 12.5
C 8.5 0 0 -1 7.5
D 4.5 0 0 0.5 5

B

A

(2)

M1

2 5 9

0

M0

7
(LDLS) algorithm:
Step1. Calculate the median execution time of each
task over all the processors.
Step2. Find the static level of each task in the APG,
using the median execution times of the tasks.

 E G H

 C D F

 7
 3
re 4. Scheduli

ower Sc

 to the DL
 algorithm
highest dyn
nsumption,

cost function

Step3. Determine the dynamic level of every ready e
9
Execution Tim

 13

 0
ng using DLS A

heduling

S algorithm, t
seeks a task-
amic level. T

our algorit
.
1

1

lgorithm.

he low power
processor pair
o account for
hm uses the

task for each processor using Equation 2.
Step4. Find the task-processor pair that has the
highest dynamic level and assign the task on that
processor.
 Step5. Determine the new set of tasks that are ready
for execution. If the set is not empty repeat steps
three to five.
Example 2: Let us consider Example 1 using the
LDLS algorithm. Figures 5 and 6 show the power-
delay characteristics of the tasks on processors M0
and M1. Using Equation 3 and Figures 5 and 6,

ESA ’03 International Conference 265

E(Ni, Mj) is obtained for each task-processor pair
using α =1. The result is shown in Table 4. The

Figure 5: Power versus execution time of the application
on processor M0

Figure 6: Power versus execution time of the application
on processor M1.

median execution time and static level of each task
is the same as Example 1 and is shown in Table 1.
Based on Figure 3, the available tasks are A,B,C
and D. The dynamic levels of these tasks on
processors M0 and M1 are evaluated using Equation
2 and the result is shown in Table 5. Accordingly,
task B has the highest dynamic level on processor
M1. Therefore, it is scheduled on processor M1.

Next, we consider the dynamic levels of tasks A,
C, E and D as shown in Table 6. Note that
DA(E,M0,Σ)= 5 because of the communication delay
between the processors. Moreover, TF(M0,Σ)=3 since

Table 4: Evaluation of E(Ni, Mj)

Table 5: Calculation of dynamic levels in step 1 using
 LDLS algorithm.

Table 6: Calculation of dynamic levels in step 2 using
 LDLS algorithm.

N
i

P
0 (i)

P
1 (i)

P
ave (i)

T
ave-0 (i)

T
ave-0 (i)

E(N
i, M

0)

E(N
i, M

0)

A 4.25 2.5 3.37 2.4 1.7 -0.4 1.3
B 5.25 2.6 3.9 2.3 1.8 -0.3 1.2
C 2 1.5 1.75 4.5 5 -0.5 1
D 1.5 2.4 1.95 3.25 4.5 1.75 -0.5
E 6.2 2.7 4.45 3.25 2.4 -.25 1.6
F 4.5 2.6 3.55 3.4 2.5 -0.4 1.5
G 1.75 2.1 1.92 3.5 5.1 0.5 -0.1
H 1 1.2 1.1 8 10 0 0

Processor M0
N SL DA TF ∆ E DL

A 11.5 0 0 0.5 -0.4 11.6
B 19.5 0 0 0.5 -0.3 19.7
C 8.5 0 0 1 -0.5 9
D 4.5 0 0 -0.5 1.75 5.75

Processor M1
A 11.5 0 0 -0.5 1.3 12.3
B 19.5 0 0 -0.5 1.2 20.2
C 8.5 0 0 -1 1 8.5
D 4.5 0 0 0.5 -0.5 4.5

Processor M0
N SL DA TF ∆ E DL

A 11.5 0 0 0.5 -0.4 11.6
C 8.5 0 0 1 -0.5 9
D 4.5 0 0 -0.5 1.75 5.75
E 17 5 0 0.5 -0.25 12.25

Processor M1
A 11.5 0 3 -0.5 1.3 9.3
C 8.5 0 3 -1 1 5.5
D 4.5 0 3 0.5 -0.5 1.5
E 17 3 3 -0.5 1.6 15.1

ESA ’03 International Conference 266

processor M1 has to first complete the execution of
task B. Based on the results of Table 6, the LDLS
algorithm assigns E on M1.

Similarly, the algorithm evaluates the dynamic
levels of the available tasks on the processors, and
makes the scheduling assignment as shown in
Figure 5.

Figure 5. Scheduling using LDLS algorithm.

(c)

Figure 6. Acyc

4. Performan

In Example

the sum of the p
and H on M0 an
A, C, D and F
consumption is

[(5.25+6.2+2
In Example

power consump
consumption of
power consumpt
Hence, the total

[(4.25+2+1.5

The power saving is obtained at the cost of longer
execution time. The tradeoff between execution
time and power consumption can be controlled
through α.

We next considered some other APEGs of the
same tasks, as shown in Figure 6, and compared
their scheduling using both LDLS and DLS
algorithms. Their power-saving results are shown in
Table 7. In all cases there is an improvement in
power saving. The amount of improvement is
dependent on a number of factors such as power
usage of different processors, interdependencies of
tasks, and the power delay characteristics of each
task.

Table 6: Comparison of different APEGs.

A C D F

B E G

 DLS LDLS
A

PEG
Figure

Pow
er

Tim
e

Pow
er

 Tim
e

Power
improvement
using LDLS

 P0

Execution Time

 P1

C E

 9

A B D F G

4 6 7 3 4 10

 A B C

 E F G

 9 7

3
(b)

 A B C

 D E

 G H

 9 7

 6

3 F

2 11 14 6 22 0

 0

 4

 3 12 22 7

H

3 23.55 17 20.5 22 12.95 H 4
 (a)

 A

)

8(a) 26.8 31 17.25 39 35.6
8(b) 22.8 18 21.25 23 6.79
8(c) 22.3 20 19.3 21 13.45

D

 H 4

E
 C

 2

 5
 9
 10

5. Conclusion

In this paper, we have presented a compile-time

8(d) 22.8 18 21.25 23 6.79
 B

 H

F

 4 4 4

 10

lic Precedence Exec

ce Results

1, the total powe
ower consumption
d the power con
on M1. Therefore

.1+1)+(2.5+1.5+2
2, using LDLS al
tion is the sum
tasks A, C, D and
ion of tasks B, E
power consumptio
+4.5)+(2.6+2.7+

 D

 (d)

ution Graphs

r consumption is
 of tasks B, E, G

sumption of tasks
, the total power

.4+2.6)] =23.55
gorithm, the total
 of the power
 F on M0 and the
, G and H on M1.
n is

1.75+1.2)]= 20.5

scheduling strategy called Low-Powe
Level scheduling algorithm. This algo
into account the power consumpt
application. The algorithm is flexible an
optimal scheduling time (with no po
when α is set to zero. In addition, de
saving can be achieved by controllin
modest increase in the execution time.

References

[1] C. Reuter, M. Schwiegershaus

Pirsch. Heterogeneous Mu
Scheduling and Allocatio
Evolutionary Algorithms. In Pro
the IEEE International Con
Application-Specific Systems, A
and Processors, pp. 294-303, July

[2] A. Khokhar, V. K. Prasanna, M.
and C. Wang. Heterogeneous

 F G
(%

r Dynamic
rithm takes
ion of an
d generates

wer saving)
sired power
g α with a

en and P.
ltiprocessor
n using
ceedings of

ference on
rchitecture
 1997.
E. Shaaban
Computing:

ESA ’03 International Conference 267

Challenges and Opportunities. IEEE
Transactions on Computers, vol. 26, pp. 18-
27, June 1993.

[3] H. Topcuoglu, S. Hariri and M.Y. Wu. Task
Scheduling Algorithms for Heterogeneous
Processors. In Proceedings of The 8th
Heterogeneous Computing Workshop, pp. 3-
14, April 1999.

[4] L. Wang, H.J. Siegel, V.P. Rowchowdhury
and A.A. Maciejewski. Task Matching and
Scheduling in Heterogeneous Computing
Environments Using a Genetic- Algorithm-
Based Approach. Journal of Parallel and
Distributed Computing, vol. 47, pp. 8-22,
November 1997.

[5] M.A. Iverson and F. Ozguner. Dynamic
Competitive Scheduling of Multiple DAGs in
a Distributed Heterogeneous Environment. In
Proceedings of the 1998 Workshop on
Heterogeneous Processing, pp. 70-78, March
1998.

[6] A. Radulescu and A. J. C. Van Gemund.
Fast and Effective Task Scheduling in
Heterogeneous Systems. In 9th
Heterogeneous Computing Workshop,
pp. 229-239, May 2000.

[7] Y.K. Kwok and A. Ishfaq. Link Contention-
Constrained Scheduling and Mapping of
Tasks and Messages to a Network of
Heterogeneous Processors. In Proceedings
of 1999 International Conference on Parallel
Processing, pp. 551-558, September 1999.

[8] M. Tin, H.J. Seigel, J.K. Antonio and Y.A.
Li. Minimizing the Application Execution
Time Through Scheduling of Subtasks and
Communication Traffic in a Heterogeneous
Computing System. In IEEE Transactions on
Parallel and Distributed Systems, vol. 8, no.
8, pp. 857-870, August 1997.

[9] J.J. Dongarra and D.W. Walker. The Quest
for Petascale Computing. In IEEE
Transactions on Computing in Science and
Engineering, pp. 32-39, May 2001.

[10] C.H. Gebotys and R.J. Gebotys. Power-
Minimization in Heterogeneous Processing.
In Proceedings of 29th Hawaii International
Conference on System Sciences (HICSS’96),
vol. 1, pp. 330-337, January 1996.

[11] R. Mishra, N. Rastogi, D. Zhu, D. Moss´e
and R. Melhem. Energy Aware Scheduling
for Distributed Real-Time Systems. In

Proceedings of International Parallel and
Distributed Processing Symposium
(IDPS’03) (to appear).

[12] L. Benini and G. De Micheli. System-Level
Power Optimization: Techniques and Tools.
In International Workshop on Low Power
Electronics and Design, 1999.

[13] W.T. Shiue and C. Chakrabarti. Low-Power
Scheduling with Resources Operating at
Multiple Voltages. In IEEE Transactions on
Circuits and Systems-2: Analog and Digital
Signal Processing, vol. 47, no. 6, pp. 536-
543, June 2000.

[14] Y.H. Lu, L. Benini and G. De Micheli. Low-
Power Task Scheduling for Multiple Devices.
In International Workshop on
Hardware/Software Codesign 2000, pp. 39-
43, May 2000.

[15] D. Kirovski and M. Potkonjak. System-level
Synthesis of Low-power Hard Real-time
Systems. In Proceedings of the 34th Annual
Conference on Design Automation, 1997.

[16] M. Srivastava, A. Chandrakasan, and R.
Brodersen. Predictive System Shutdown and
Other Architectural Techniques for Energy
Efficient Programmable Computation. In
IEEE Transactions on VLSI Systems, vol. 4,
pp. 42-55, March 1996.

[17] J.M. Rabaey, “Digital Integrated Circuits,”
Prentice Hall, Inc., 1996.

[18] G.C. Sih and E.A. Lee. A Compile-Time
Scheduling Heuristic for Interconnection-
constrained Heterogeneous Processor
Architectures. In IEEE Transactions on
Parallel and Distributed Systems, vol. 4, no.
2, pp. 175-187, February 1993.

