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Abstract: This paper develops a matching and 
scheduling algorithm that accounts for both the 
execution time and the power consumption of the 
application. The power consumption of different 
processors on a variety of tasks is taken into account 
using a proposed incremental cost function, which is 
utilized in a low-power dynamic-level scheduling 
algorithm.  This cost function is independent of the 
topology and can be adjusted to the desired level in such 
a way that the power consumption of the tasks would 
effect scheduling.  
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1. Introduction 
 

A heterogeneous distributed computing system 
is a suite of diverse high-performance machines 
interconnected by a high-speed network. They have 
promising high-speed processing of 
computationally intensive applications with diverse 
computation needs. One of the challenges in 
heterogeneous computing is to develop matching 
and scheduling algorithms that assign the tasks of 
the application to the processors [1, 2]. Therefore, 
researchers have proposed many static, dynamic 
and even hybrid algorithms to minimize the 
execution time of applications running on a 
heterogeneous system [3, 4, 5, 6, 7, 8]. Another 
challenge facing distributed computing community 
has become power consumption of parallel 
machines [9]. A study by Argonne National 
Laboratory has indicated that a 2.5 petaflop 
supercomputer, made of over a hundred thousand 

CPUs, will be available by 2010. The study predicts 
that such a system will cost $16 million and would 
require 8 mega watts of power to operate at a cost 
of about $8 million per year. Hence, soaring energy 
prices and rising concern about the environmental 
impact of electronics systems highlight the 
importance of incorporating low power design 
schemes at all levels of such systems. 

At the system level, some researchers have 
examined energy efficient scheduling algorithms to 
reduce power consumption [10, 11, 12, 13, 14]. 
Static techniques, such as synthesis and compilation 
for low power, are applied at design time [15]. In 
contrast, dynamic techniques use runtime behavior 
to reduce power when systems are serving light 
workloads or are idle [16]. For example, one such 
scheme is dynamic voltage scaling (DVS), where 
the supply voltage at runtime is changed as a 
method of power management. Reducing the supply 
voltage is an effective way of reducing the power 
consumption, but we pay a speed penalty for 
voltage reduction. The impact of reducing Vdd on 
the delay is shown in Figure 1 [17] for a variety of 
different logic circuits, ranging in size from 56 to 
44,000 transistors and spanning a variety of 
functions. The figure illustrates that on a single 
processor, the circuit-delay degrades by a factor of 
two when the supply voltage is dropped from 5V to 
3V. This reduction in supply voltage reduces the 
energy usage by a factor of 2.89 [17]. Figure 2 
depicts power versus delay for the circuits in Figure 
1. Figures 1 and 2 demonstrate that as we reduce 
voltage, the circuit’s power and energy usage 
decrease and the circuit’s delay increases. 
Moreover, Figure 2 shows that the required energy 
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for a circuit would be different depending on power 
or delay requirement. Therefore, one can specify 
the maximum tolerated power and determine the 
required delay within the circuit and vice versa.  

At the system level, in a homogeneous system, 
different tasks would utilize a combination of 
different circuits and therefore exhibit similar 
characteristics to Figure 2. Hence, such a 
characteristic per task for a processor can be 
measured. In a heterogeneous system, each task 
exhibits different power-delay characteristics per 
processor. 

 

Figure 1: Normalized delay   versus  supply voltage for              
various experimental circuits. 

 

Figure 2: Normalized power versus normalized delay for 
various experimental circuits. 

 In this paper, we consider scheduling tasks in a 
heterogeneous distributed system, where processors 
have different speed and power characteristics. Our 
scheduling algorithm uses an efficient cost function, 

which, in addition to execution time, considers the 
power consumption of tasks per processor; we 
assume that power-delay characteristics are known 
for each task within a processor.     
 The rest of the paper is organized as follows. An 
overview of an existing Dynamic Level Scheduling 
algorithm is given in Section 2. The Low power 
Dynamic Level Scheduling algorithm is explained 
in Section 3. Section 4 evaluates the effects of the 
proposed low-power cost function on the 
scheduling heuristic. Finally, concluding remarks 
are given in Section 5. 

2. DLS Algorithm 

In this section, for completeness, we give a brief 
overview of the dynamic level scheduling (DLS) 
algorithm proposed by Sih and Lee in [18]. Let us 
consider M heterogeneous processors and N tasks 
of an application. The DLS algorithm is a compile 
time, static list scheduling heuristic. It allocates a 
Directed Acyclic Graph (DAG) structured 
application to a set of heterogeneous machines to 
minimize the execution time of the application. The 
algorithm also considers the interprocessor 
communication overheads when mapping 
precedence graphs onto multiple processor 
architectures. At each scheduling step, the DLS 
algorithm chooses the next task to schedule and the 
processor on which the task is to be executed. This 
is done by finding the ready task and processor pair 
that have the highest dynamic level. The dynamic 
level of a task-processor pair is given by the cost 
function specified by Equation 1. Each term in the 
cost function is expressed in time units. The terms 
collectively specify the priority of executing tasks 
to minimize the overall execution time as specified 
below. The dynamic level, denoted by DL(Ni,Mj,Σ) 
reflects how well the task and processor are 
matched at state Σ. Σ indicates the state of the 
processing resources (previously scheduled tasks) 
and the state of the communication resources 
(previously scheduled data transfers). The static 
level of task, denoted by SL(Ni), is the largest sum 
of execution times along any directed path from 
task Ni to an endtask of the graph, over all endtasks 
of the graph. The static level component indicates 
the importance of the task in the precedence 
hierarchy, giving higher priority to the task located 
further from the terminus. DA(Ni,Mj,Σ) is defined as 
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the earliest time that all data required by task is 
available at processor at state Σ. TF(Mj,Σ) 
represents the time that the last task assigned to the 
jth processor finishes execution. The maximization 
term max[DA(Ni,Mj,Σ),TF(Mj,Σ)] reflects the 
availability of the processing and communication 
resources, penalizing the task-processor pairs that 
incur large communication costs. Hence, a task-
processor pair with an earlier starting time will have 
higher scheduling priority. ∆(Ni,Mj) accounts for the 
processor speed differences, adding priority to the 
processors that execute the task quickly, and 
subtracting priority from processors that   execute 
the   task   slowly. The higher the value of the cost 
function, DL(Ni,Mj,Σ), the more beneficial the task 
processor pair is, and as such, the more likely it is 
that processor Mj should be used for executing task 
Ni. 

)M,∆(N Σ)],TF(M 
Σ),,M, DA(N max[)SL(N Σ),M,DL(N 

jij

jiiji

+

−=
                           

 where the variables are defined as: 
 iN          =  ith task 
 jM          =  jth processor 
 Σ            =  State of time 
 Σ),M,DL(N ji   =  Dynamic level of a     
            task- processor                          
  )SL(Ni         =  The static level of a task 
  Σ),M,DA(N ji =  Data ready time 

  Σ),TF(M j     =  Processor ready time 

  )M,∆(N ji     =  Accounts for the varying   
              processor speeds 

 
Example 1: Let us consider an application to be 
scheduled onto a two-processor heterogeneous 
system. The processors are assumed to be 
interconnected by a full-duplex link. Figure 3 shows 
the acyclic precedence expansion graph (APEG) of 
the application. The numbers over the arrows 
represent the communication time. Execution time 
and power consumption of each task within each 
processor is given in Table 1. Note that static level 
of each task is calculated based on median 
execution time of the task among different 
machines. For example SL(E) is calculated along 
the H→G→E path as 9+4.5+3.5=17. 

 

 
 
 

 
  
 
 
 

 
Figure 3. Acyclic precedence graph of an application. 

 
The DLS algorithm selects a task-processor pair 

using the following steps. First, since tasks A, B, C 
and D are ready for execution on either processors 
M0 or M1, the dynamic levels of these tasks on M0 
and M1 are evaluated using Equation 1 and the 
result is shown in Table 2. Since task B on  

 
Table 1: Characteristics of the acyclic precedence graph 

  
processor M0 has the highest dynamic level it is 
scheduled, as shown in Figure 4. Next, as task B is 
scheduled, task E can also be considered for 
scheduling. Hence, the algorithm evaluates the 
dynamic level of tasks A, E, C, and D, as shown in 
Table 3. Note that during these evaluations, 
TF(M0,Σ)=2 and DA(E,M0,Σ)=2 since both tasks E 
and C would reside on the    same    processor.    
Therefore, they require no communication 
overhead. On the other hand, DA(E,M1,Σ)=2+2=4, 
since the result of task B from processor M0 needs 
to be sent to processor M1. Since task E has the 
highest dynamic level on processor M0, it is 
scheduled on processor M0.  
 Similarly, the algorithm makes other task-
processor assignments. Figure 4 shows the resulting 
scheduling progressions using the DLS algorithm. 
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 Table 2: Calculation of dynamic level in step1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Table 3: Calculation of dynamic level in step2. 
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The first three terms of Equation 2 are taken 

directly from Equation 1. These terms promote the 
best-suited resources to tasks per the DLS 
algorithm. The term E(Ni, Mj) is a measure of how 
much a given scheduling decision will contribute to 
the power consumption of tasks and vice versa. A 
larger value of E(Ni, Mj) increases the scheduling 
priority for task Ni on processor Mj. Hence, we 
define E(Ni, Mj) as 

 
 E(Ni, Mj) = α[Tj(i) – Tave_j(i)]                         (3) 
 

α in equation 3 is a constant factor, which 
determines the relative importance of power in the 
scheduling process.  Tj(i) is the execution time of 
task Ni on processor Mj using Pj(i), where Pj(i) ) is 
the power used by task Ni on processor Mj.  Tave_j(i) 
is the execution time of task  Ni on processor Mj 
using Pave(i), where Pave(i) is the average power 
used by task Ni on all processors. Tave_j(i) is 
obtained from the power versus execution time 
characteristic graph. Figures 5 and 6 show examples 
of power-delay characteristics of a set of tasks on 
two processors. 
 
3.1 LDLS Algorithm 

Based on Equation 2, we have developed the 
following Low-power Dynamic Level Scheduling 

Processor M0 
N SL DA TF ∆ DL 

A 11.5 0 0 0.5 12 
B 19.5 0 0 0.5 20 
C 8.5 0 0 1 9.5 
D 4.5 0 0 -0.5 4 

Processor M1 
A 11.5 0 0 -0.5 11 
B 19.5 0 0 -0.5 19 
C 8.5 0 0 -1 7.5 
D 4.5 0 0 0.5 5 

Processor M0 
N SL DA TF ∆ DL 
A 11.5 0 2 0.5 10 
E 17 2 2 0.5 15.5 
C 8.5 0 2 1 7.5 
D 4.5 0 2 -0.5 2 

Processor M1 
A 11.5 0 0 -0.5 11 
E 17 4 0 -0.5 12.5 
C 8.5 0 0 -1 7.5 
D   4.5 0 0 0.5 5 

B

A

 
(2) 

M1 

2   5    9 

0 

 

M0 

7 
(LDLS) algorithm: 
Step1. Calculate the median execution time of each 
task over all the processors.  
Step2. Find the static level of each task in the APG, 
using the median execution times of the tasks. 
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task for each processor using Equation 2.  
Step4. Find the task-processor pair that has the 
highest dynamic level and assign the task on that 
processor. 
 Step5. Determine the new set of tasks that are ready 
for execution. If the set is not empty repeat steps 
three to five.         
Example 2: Let us consider Example 1 using the 
LDLS algorithm. Figures 5 and 6 show the power-
delay characteristics of the tasks on processors M0 
and M1.  Using Equation 3 and Figures 5 and 6, 
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E(Ni, Mj) is obtained for each task-processor pair 
using α =1. The result is shown in Table 4. The  
 

 
 
Figure 5: Power versus execution time of the application    
on processor M0 

 

 
Figure 6: Power versus execution time of the application 
on processor M1. 

 
median execution time and static level of each task 
is the same as Example 1 and is shown in Table 1. 
Based on Figure 3, the available tasks are A,B,C 
and D. The dynamic levels of these tasks on 
processors M0 and M1 are evaluated using Equation 
2 and the result is shown in Table 5. Accordingly, 
task B has the highest dynamic level on processor 
M1. Therefore, it is scheduled on processor M1. 

Next, we consider the dynamic levels of tasks A, 
C, E and D as shown in Table 6. Note that 
DA(E,M0,Σ)= 5 because of the communication delay 
between the processors. Moreover, TF(M0,Σ)=3 since  

 

Table 4: Evaluation of E(Ni, Mj) 

 
 
 

Table 5: Calculation of dynamic levels in step 1 using  
   LDLS algorithm. 

 
 
 
Table 6: Calculation of dynamic levels in step 2 using  
              LDLS algorithm. 
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0 ) 
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A 4.25 2.5 3.37 2.4 1.7 -0.4 1.3 
B 5.25 2.6 3.9 2.3 1.8 -0.3 1.2 
C 2 1.5 1.75 4.5 5 -0.5 1 
D 1.5 2.4 1.95 3.25 4.5 1.75 -0.5 
E 6.2 2.7 4.45 3.25 2.4 -.25 1.6 
F 4.5 2.6 3.55 3.4 2.5 -0.4 1.5 
G 1.75 2.1 1.92 3.5 5.1 0.5 -0.1 
H 1 1.2 1.1 8 10 0    0 

Processor M0 
N SL DA TF ∆ E DL 

A 11.5 0 0 0.5 -0.4 11.6 
B 19.5 0 0 0.5 -0.3 19.7 
C 8.5 0 0 1 -0.5 9 
D 4.5 0 0 -0.5 1.75 5.75 

Processor M1 
A 11.5 0 0 -0.5 1.3 12.3 
B 19.5 0 0 -0.5 1.2 20.2 
C 8.5 0 0 -1 1 8.5 
D   4.5 0 0 0.5 -0.5 4.5 

Processor M0 
N SL DA TF ∆ E DL 

A 11.5 0 0 0.5 -0.4 11.6 
C 8.5 0 0 1 -0.5 9 
D 4.5 0 0 -0.5 1.75 5.75 
E 17 5 0 0.5 -0.25 12.25 

Processor M1 
A 11.5 0 3 -0.5 1.3 9.3 
C 8.5 0 3 -1 1 5.5 
D 4.5 0 3 0.5 -0.5 1.5 
E   17 3 3 -0.5 1.6 15.1 
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processor M1 has to first complete the execution of 
task B. Based on the results of Table 6, the LDLS 
algorithm assigns E on M1.  

Similarly, the algorithm evaluates the dynamic 
levels of the available tasks on the processors, and 
makes the scheduling assignment as shown in 
Figure 5. 

 
 
 
 

 
 

 
 

Figure 5.  Scheduling using LDLS algorithm. 
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The power saving is obtained at the cost of longer 
execution time. The tradeoff between execution 
time and power consumption can be controlled 
through α. 

We next considered some other APEGs of the 
same tasks, as shown in Figure 6, and compared 
their scheduling using both LDLS and DLS 
algorithms. Their power-saving results are shown in 
Table 7. In all cases there is an improvement in 
power saving. The amount of improvement is 
dependent on a number of factors such as power 
usage of different processors, interdependencies of 
tasks, and the power delay characteristics of each 
task.   
 

Table 6: Comparison of different APEGs. 

A C D F  

B E G  

   DLS LDLS 
A

PEG
Figure

Pow
er 

Tim
e

 

Pow
er 

 Tim
e

 

Power 
improvement   
using LDLS 

  P0

Execution Time 

  P1 

C   E 

 9 

A B D F  G 

4  6 7 3   4 10 

  A B C 

  E     F  G 

 9 7  

3  
(b) 

  A B  C 

  D       E 

   G  H 

 9   7 

 6 
 
3 F

2 11 14 6 22 0 

 0 

  4 

 3 12   22    7 

H 
   

3 23.55 17 20.5 22 12.95  H   4 
    (a) 

  A 

)

8(a) 26.8 31 17.25 39 35.6 
8(b) 22.8 18 21.25 23 6.79 
8(c) 22.3 20 19.3 21 13.45 

D 

  H    4 

E 
 C 

  2 

  5 
  9 
 10
 
5. Conclusion 
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