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Abstract− This paper presents an efficient system level 
power saving method for DRAM with multiple power 
modes.  The proposed method is based on the power 
aware scheduling algorithm that controls DRAM modules 
in coarse grain in which the scheduler assigns 
appropriate power modes to memory banks at context 
switching time.  The method controls the transition of 
multiple power modes, which is currently available 
technology, based on the history of gaining processor and 
memory bank usage of each process.  The experimental 
results demonstrate the efficiency of the proposed 
schemes in multiprogramming environment.    
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1. Introduction 
Recent growing technology of mobile, handheld, and 
embedded systems requires increasing research 
efforts on developing low power management 
methods in several different aspects.  Among those 
aspects, reducing energy consumption in the 
memory hierarch has been an important issue since 
the memory system is a major power consumption 
component of the system.  Cost of memory is 
inexpensive now, but the cost of energy consumed 
by memory system is high for those battery 
dependable systems.  Together with low power 
cache design techniques [8, 9, 15, 17] and power 
efficient on-chip memory system design techniques 
in the embedded systems that replace cache with 
small on-chip SRAM module [1, 2, 3], methods for 
reducing power in the DRAM have been proposed in 
the literature [4, 5, 9, 11, 16].  These efforts are 
based on the recent DRAM technology that makes 
DRAM module operate in different power modes.  
For instance, RAMBUS’s RDRAM technology 
provides four different power modes such as active, 
standby, napping, and shut-down [12].  Of course 
each power mode consumes different amount of 
energy, and reactivation from a lower power mode to 

a higher power mode requires reactivation cost as 
additional cycles.  Thus it is important to design 
appropriate power management scheme for utilizing 
these manufacturer provided technology to the 
applications including desk-top to embedded 
systems.  In DRAM power mode management 
researches, both hardware and software based 
approaches have been proposed in the literature [4, 
5, 11, 16].  In these works, memory bank 
partitioning method was used for utilizing the 
technological advantages of handling different 
power modes by turning down unused banks’ power.  
Approaches for selecting appropriate power modes 
for partitioned memory banks are grouped into 
compiler based, hardware assisted, and operating 
system based methods.  While each method has its 
own pros and cons, we focus on the operating 
system based method for reducing power of DRAM 
in this paper.  More specifically, we develop an 
efficient scheme for handing multiple DRAM power 
modes for reducing energy consumption at context 
switching time that does not require additional 
hardware support which consumes extra energy.  
Since the approach is a coarse-grained, there exist 
not much overhead of the scheme; only the 
scheduler is responsible for the operation at the 
context switching time.  Our study reflects full 
multiprogramming environment with simulated 
systems under the assumption of contiguous memory 
allocation without virtual address spaces.  Since the 
scheme is generic which does not aim a specific 
commercial DRAM model nor a specific platform, it 
can be applied to a variety of architectures.  Using 
the simulated system model, we trace the behavior of 
multiprogramming completely for utilizing the 
benefit of multiple power modes provided by 
manufacturers. 
     The remainder of this paper is organized as 
follows.  Related work is reviewed briefly in Section 
2.   In Section 3,  DRAM  power modes and memory 



system structure for the experiment are described.  
The proposed scheme for reducing DRAM power 
dissipation is described in Section 4, followed by the 
experimental results in Section 5 and conclusion in 
Section 6. 
 

2. Related Work 

Efforts for reducing energy consumption by 
selectively turning down memory banks’ power are 
found in the aspects of compiler based, hardware 
assisted, operating system based.  Delaluz, et. al. [5] 
proposed a compiler-based method for reducing 
power on DRAM modules (banks) by determining 
idle periods of each memory module at compile 
time.  Though this method does not have 
resynchronization cost overhead since it completely 
predicts the memory bank usage at compile time for 
the target data, it also has several drawbacks.  The 
scheme is conservative since not all information are 
available/analyzable at compile time, only arrays 
and loop constructs are involved in the practice, and 
only single programming case was considered.  Thus 
the approach handles very limited situations and it 
assumed the direct mapping of address to the 
physical memory (i.e., without virtual memory 
space).  Udayakumaran, et al. [16] proposed a 
compiler-based scheme in which data allocation and 
memory partitioning  are performed jointly.  It uses 
application specific partitioning of the scratchpad 
memory based on the temporal locality.  Self-
monitored run time approaches that need hardware 
support were proposed in [5].  The idea is that the 
memory system automatically transitions to lower 
power modes based on the information captured by 
the supporting hardware.  Three proposed schemes 
were based on adaptive threshold value (ATP), fixed 
threshold value (CTP), and history of inter-access 
time (HBP).  Among them, the history-based 
approach showed the best performance.  In fact, in 
ATP, no direct transition of power modes are 
allowed, but only through a higher mode to the one 
lower mode serially are allowed.  The ATP method 
needs extra hardware for making the adaptive 
decision that consumes extra energy, and yields the 
resynchronization cost with mis-prediction.  The 
CTP method needs a counter for each memory bank, 
and the transition method is the same as the one in 
the ATP; i.e., serial from a higher to one lower, but 
it showed better performance than the compiler-
based approach proposed  in [5].   The HBP  method 

can transit power mode of a bank directly from 
active to a lower power mode, by simply assuming 
that the next inter-access time is the same as the 
previous inter-access time.  Since the compiler based 
approaches have certain limitations and hardware 
oriented approaches need additional energy 
consumptions on those supporting hardware for 
checking bank usage, alternative methods based on 
the operating system has started appearing in the 
literature.  In fact, there have been many operating 
system based power reduction schemes for 
processors and I/O devices, but very few works has 
focused on utilizing multiple DRAM power modes 
for reducing energy consumed by memory system.  
Lebeck, et al. [11] proposed a scheme for reducing 
DRAM energy by power aware page allocation 
algorithm.  Underlying idea is that an application’s 
pages are allocated into a minimum number of chips 
(banks) and unused banks are in low powered modes 
during the execution of the application.  The work 
considered only single programming case and there 
was no consideration of multiprogramming 
situations. Delaluz, et al. [4] proposed a scheduler-
based approach of turning down the power of 
unused memory banks.  The method uses a bank 
usage table that managed by the operating system, 
and resets all banks’ power modes at the context 
switching time.  It is a prediction method with mis-
prediction risks since the setting is based only on the 
one previous time’s bank usage.  These operating 
system based methods can be used with hardware 
methods if hardware cost (additional energy 
consumption) is affordable.            
 
3. DRAM Power Modes and Memory  
    System Structure 
Partitioning the memory into smaller sized 
components can reduce the power consumption 
significantly.  In this paper, we assume the memory 
system consists of smaller modules in rows (banks) 
and columns.  For the simplicity, we further assume 
that each bank consists of one DRAM module that is 
operated in four different operation modes; i.e., 
active (attention), standby, napping, and power-
down modes.  Figure-1 illustrates the memory 
system structure under these assumptions, and 
Figure-2 illustrates the DRAM power mode 
transitions and costs found in the data sheet from 
RMBUS [12].  In this paper, we use normalized 
values   for   measuring   energy   consumption    and  
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                   Figure-1. Memory system structure 
 

resynchronization costs.  Thus the values shown in 
Figure-2(b) are normalized to constants x and c.  In 
fact, 8MB RDRAM module consumes 3.57nJ per 
cycle in active mode in 3.3V, 2.5ns clock cycle time 
technology.  In the figure, refined six power modes 
are illustrated, but only four modes are 
distinguishable because once in ATTN mode, the 
device will automatically transition to the ATTNW 
and ATTNR modes as it receives WR and RD 
commands.  Thus in this paper, we use term “active” 
for representing the three attention modes shown in 
the figure.  
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     Power               Power              Resynchronization  
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     ATTN            1x nJ                          0c ns 
     STBY             0.23x nJ                    1c ns 
     NAP               0.089x nJ                  15c ns 
     PDN               0.0014x nJ                4,500c ns 
 

            (b) Energy consumption and resynchronization cost 
 
                       Figure-2. RDRAM power modes 

We consider the following power mode transition 
directions in this paper; active to standby, active to 
nap, and active to power-down directly, and the 
resynchronization cost from each of these low power 
modes to active mode are shown in Figure-2(b).  We 
ignore all other directions and costs in this paper. 
    In the ideal case in which the resynchronization 
starts in advance with no latency overhead, formula 
for measuring the energy consumed in a bank during 
its idle time (in a lower power mode) is 
 
           (Tidle – Tresyn) Elow + Tresyn Eact 
 
where, Tidle is the bank’s idle time, Tresyn is the 
resynchronization cost, Elow is the unit energy 
consumed in the lower power mode, and Eact is the 
unit energy consumed in the active power mode.  
The term Tresyn*Eact represents the energy needed 
during the resynchronization.  Based on the above 
formula, the gain of using a lower power mode 
during the idle time in each bank is: 
 
           Tidle Eact – [(Tidle – Tresyn) Elow + Tresyn Eact ] 
 
The term  Tidle*Eact represents the energy 
consumption without using multiple power modes; 
i.e., all modules are in active continuously.  Thus 
when  Tidle > Tresyn, we have the energy gain:  
 
           (Tidle – Tresyn) (Eact – Elow)                            (1) 
 

4. Context Switching Time Power  
    Management 
The main idea of controlling DRAM power at 
context switching time is that the memory array is 
divided into smaller banks and unused banks are 
power downed during the entire period of the current 
time quantum (or, until the processor is preempted 
based on the event).  Thus the scheme is coarse 
grained; i.e., during the current time quantum (or, 
until CPU preemption) no power transitions occur.  
Since we can implement the scheme with only 
operating system’s modules, this approach does not 
require special hardware support that consumes extra 
energy.  A simple way of utilizing the above idea is 
using the contiguous memory allocation to 
processes.  In fact, the compiler-based approaches 
allocate contiguous data memory for arrays into the 
same  bank  as  much as  possible [5],   power  aware  



paging scheme [11] allocates frames for each 
process into contiguous frames that are physically 
closed so that pages are distributed to as less banks 
as possible.  In our experiment with a simulated 
system, processes are loaded into contiguous 
memory spaces (with best-fit) that are divided into 
banks, and at each context switching time, unused 
banks (banks except the ones assigned to the running 
process) are power downed.  At loading time, the 
operating system checks which banks are allocated 
to the process, and keep the information in the PCB 
of each process.  Following three possible cases are 
considered in the experiment; multiple processes are 
allocated to a bank, only one process is allocated to a 
bank, and a process is allocated to multiple banks 
(i.e., it exceeds the boundary of a bank).  Thus, it is 
not difficult to figure out which banks will be 
unused during the new time quantum until the CPU 
is preempted due to the quantum expiration or some 
event occurrence (e.g., I/O).  When the processor is 
preempted, banks that are allocated to the running 
process (switching out process) have choices of 
selecting lower power modes based on the selection 
algorithm.  The idea used in the selection algorithm 
is that the scheduler checks the process waiting time 
history (i.e., how frequently it has been scheduled to 
CPU) that is kept in PCB, and selects an appropriate 
lower power mode to each idle bank.  The selection 
algorithm is described in section 4.2. 
 
4.1 Energy Gain  
The simplest scheme for saving power of DRAM 
banks is turning down unused bank’s power to the 
lower power mode if there exist only two power 
modes; i.e., active and low.  But the consideration is 
whether the turning down to the lower mode actually 
yields the gain or not.  In the case of the switched 
out process regains CPU within very short period of 
time, turning down to the lower mode yields more 
energy consumption because of the resynchroni-
zation cost.  For the ideal case in which the 
resynchronization starts as early as possible for 
eliminating the latency overhead (i.e., extended 
time), energy gain is computed using formula (1) in 
Section 3.  Since our proposed scheme is coarse-
grained and thus it does not start the reactivation at 
any time we should use a different formula for 
computing the energy gain of using a lower power 
mode during the bank’s idle time.  For the general 
case without considering the early resynchroniza-
tion, the energy gain is 

      Tidle Eact – ( Tidle Elow + Tresyn Eact) 
 
with the overhead of extended time with the ratio of   
      (Tidle + Tresyn) / Tidle 
 
Thus, when  Tidle > Tresyn(Eact/(Eact-Elow)), we have 
the energy gain: 
 
      Tidle (Eact – Elow) – Tresyn Eact                             (2) 
 
Figure-3 illustrates the energy consumption during 
the bank’s idle time in two cases such as the ideal 
case and the case with the latency overhead.  During 
the resynchronization, energy for the active mode is 
consumed as illustrated in Figure-3(b). 
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              (a) ideal case                (b) resynchronization latency 
 
       Figure-3. Power consumption during idle time of a bank 
 
 
From formula (2), we can derive the conditions for 
converting to each of standby, nap, and power-down 
modes easily.  For example with considering only 
active and nap modes and 2.5 ns clock cycle time, 
when a bank’s idle time is bigger than 82.42 ns 
converting to nap mode has energy gain.  The 
condition for checking whether converting to the 
lower power mode yields the gain or not heavily 
depends on the bank’s future idle time.  We describe 
the method of measuring each bank’s idle time in 
section 4.2.       
  
4.2 Selection from Multiple Power Modes 
Based on the formula (2) in section 4.1, we can 
generalize the power mode selection scheme for the 
multiple power modes.  For measuring each bank’s 
future idle time, we use the accumulated average of 
each process’s waiting time for predicting the period 
of the future idleness.  In fact there have been 
proposed many prediction methods for saving 
energy of devices in the literature, but we use the 
accumulated average method for the simplicity in 
this paper.  Algorithm-1 describes the multiple 
power mode  selection  scheme  at context switching 



time.  Measuring the accumulated average waiting 
time for processes is also described in the algorithm.  
Since we keep the information of allocated bank(s) 
to a process in the PCB, we can easily find the 
corresponding bank(s) for updating the power mode. 
 
Algorithm-1. 
    Assume: In each PCB, wall clock times for CPU  
                   release/regain are kept. 
 
    for each process,  
       {at context switching in time, 
            {compute current wait time (Tw): 
                 Tw = Treg – Trel; 
                      //Treg and Trel represent CPU regain 
                      //and release  times respectively 
              update accumulated ave. wait time (Taw): 
                 Taw = [Taw * (n-1) + Tw] / n; 
                      //n represents number of times this  
                      //process has gained CPU so far 
              } 

          at context switching out time, 
              {select a power mode from standby, nap,  
                and power-down: 
                    find max of:   
                         Taw (Eact – Estby) – Tresyn-stby Eact 
                         Taw (Eact – Enap) – Tresyn-nap Eact          
                         Taw (Eact – Epdn) – Tresyn-pdn Eact 

                    if  (max > 0) 
                        set the corresponding bank’s power 
                        mode to max’s mode 
                    else 
                        no operation  //keep active 
                } 
         }//for each process         
 
In Algorithm-1, the accumulated average waiting 
time (Taw) for the process is used for the predicted 
idle time of the bank (Tidle).  Thus Taw is an 
approximation of Tidle.  Terms for the energy in the 
algorithm such as Eact, Estby, Enap, and Epdn represent 
unit energy consumptions in active nap, and power-
down modes respectively.  Terms for the time such 
as Tresyn-stby, Tresync-nap, and Tresyn-pdn represent 
resynchronization latencies (times) for standby, nap, 
and power-down modes respectively. 
    Since the algorithm checks PCB’s of CPU 
releasing and gaining jobs only at the context 
switching time, the overhead of using the scheme is 
minimal,  but  it yields a remarkable amount of gain. 

5. Experimental Results 
The proposed scheme was tested on the simulated 
system.  The simulation system model includes 
RISC based CPU simulator and traditional 
multiprogramming/time-sharing operating system 
that manages queues for holding ready processes and 
I/O blocked processes.  CPU is preempted when the 
current time quantum expires or an I/O event occurs.  
The long-term scheduler (loader) selects jobs from 
job pool (we assume that all jobs arrived at time 0 
and are available).  In the system, memory is divided 
into 6 banks (one module per bank) and contiguous 
allocation with best-fit is used.  By running 120 
programs in the simulated system, we traced the 
behavior of the multiprogramming. 
    For the performance measurement, we tested 
following cases for demonstrating the efficiency of 
the proposed scheme:  
    do-nothing: all 6 banks are in active mode 
    active-nap: idle banks converts to nap mode only 
    active-standby-nap: idle banks converts to either  
                       standby mode or nap mode 
In the later two cases, the scheme checks condition 
for the positive energy gain and keeps the active 
mode when the condition does not meet, as 
described in formula (2) and Algorithm-1.  We 
excluded power-down mode from the experiment 
since the average execution time of testing programs 
was much shorter than the resynchronization cost of 
power-down mode.  Following figures show the 
performance of the scheme using normalized values.  
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             Figure-4. Power consumption  v.s. methods 
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         Figure-5. Power consumption v.s. time quantum 
 
 
Figure-4 shows that using active-nap modes and 
using active-standby-nap modes save DRAM power 
66% and 69% respectively.  Thus it reflects the 
concept that using more power modes saves more 
energy.  Figure-5 shows the results of applying 
varying size of the time quantum.  Quantum values 
shown in the graph are normalized to the average 
execution time of processes (s).  In our experiment, 
varying size of the time quantum did not 
significantly affect the performance of the scheme, 
and showed better performance of 3-modes method 
with all quantum values tested.  Though our 
experiment was limited the results successfully 
demonstrated the benefit of using context switching 
time power management scheme that does not 
require any special hardware support.  As other 
operating system based approaches, the proposed 
scheme can be used with hardware based approaches 
for gaining further energy saving. 
 

6. Conclusion and Discussion 
In this paper, we described an operating system 
based approach for saving DRAM power.  The 
approach is coarse-grained since it operates only at 
context switching time without causing considerable 
overheads.  Formulas for evaluating the condition of 
gaining power are developed and an algorithm for 
selecting appropriate power mode is designed based 
on that.  For measuring each process’s CPU 
accessing frequency, we used a simple   accumulated 

average method that approximates the predicted idle 
time of the bank.  The experimental results showed 
successful performance of the scheme in 
multiprogramming environment.  Though our tests 
are limited yet, it demonstrated the benefit of using 
the scheme that can be used with other approaches 
such as hardware supported approaches shown in the 
literature. 
    Future study should focus on developing high 
performance prediction method for measuring future 
idle time of the bank and experimenting on real 
systems. 
 
 
REFERENCES 

 
[1] L. Benini, A. Macii, E. Macii, and M. Poncino, 

“Synthesis of Application-Specific Memories for 
Power Optimization in Embedded Systems,” Proc. of 
37th Design Automation Conference (DAC 2000), pp. 
300-303, June 2000. 

[2] Benini, A. Macii, and M. Poncino, “A Recursive 
Algorithm for Low-Power Memory Partitioning,” 
Proc. of the 2000 Intl. Symposium on Low Power 
Electronics and Design, pp. 78-83, 2000. 

[3] Y. Cao, H. Tomiyama, T. Okuma, and H. Yasuura, 
“Data Memory Design Considering Effective 
Bitwidth for Low-Energy Embedded Systems,” Proc. 
of IEEE/ACM Intl. Symposium on System Synthesis 
(ISSS’2002), Oct. 2002. 

[4] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. 
Vijaykrishnan, and M. J. Irwin, “Scheduler-Based 
DRAM Energy Management,” Proc. of 39th Design 
Automation Conference (DAC’2002), pp. 697-702, 
2002. 

[5] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. 
Sivasubramaniam, and M. J. Irwin, “DRAM Energy 
Management Using Software and Hardware Directed 
Power Mode Control,” Intl. Symposium on High 
Performance Computer Architecture (HPCA-7), pp. 
159-169, Jan. 2001. 

[6] T. D. Givargis, F. Vahid, and J. Henkel, “A Hybrid 
Approach for Core-Based System-Level Power 
Modeling,” Proc. of the 2000 Conference on Asia 
and South Pacific Design Automation, pp. 141-146, 
2000. 

[7] P. Grun, N. Dutt, and A. Nicolau, “Memory Aware 
Compilation Through Accurate Timing Extraction,” 
Proc. of 37th Design Automation Conference 
(DAC’2000), pp. 316-321, June 2000. 

[8] K. Inoue, A. G. Moshnyaga, and K. Murakami, 
“Trends in High-Performance, Low-Power Cache 
Memory Architectures,” IEICE Trans. on 
Electronics, Vol. E85-C, No. 2, pp. 304-314, Feb. 
2002. 

[9] M. J. Irwin and V. Narayanan, Low Power Design: 
From Soup to Nuts, ISCA’2000 Tutorial, 2000.  



[10] M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W. 
Ye, “Influence of Compiler Optimizations on System 
Power,” Proc. of 37th Design Automation Conference 
(DAC 2000), pp. 304-307, June 2000. 

[11] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power 
Aware Page Allocation,” Proc. of 9th Intl. Conference 
on Architectural Support for Programming 
Languages and Operating Systems, pp. 105-116, 
Nov. 2000. 

[12] Rambus Inc. http://www.rambus.com/ 
[13] M. Sekine and J. H. Park, “An Efficient Low Power 

Hybrid Memory System for Mobile Computers,” 
Proc. of the 2001 Intl. Conference on Parallel and 
Distributed Processing Techniques and Applications, 
pp. 979-985, June 2001. 

[14] Y-H Lu, L. Benini, and G. D. Micheli, “Operating-
System Directed Power Reduction,” Proc. of Intl. 
Symposium on Low Power Electronics and Design, 
pp. 37-42, July 2000. 

[15] W-T Shiue and C. Chakrabarti, “Memory 
Exploration for Low Power, Embedded Systems,” 
Proc. of 36th Design and Automation Conference 
(DAC’99), June 1999. 

[16] S. Udayakumaran, B. Narahari, and R. Simha, 
“Application-Specific Memory Partitioning for Low 
Power Consumption,” Proc. of Workshop on 
Compiler and Operating Systems for Low Power 
(COLP 2002), Sept. 2002. 

[17] Y. Zhu and F. Mueller, “Preemption Handling and 
Scalability of Feedback DVS-EDF,” Proc. of 
Workshop on Compilers and Operating Systems for 
Low Power (COLP 2002), Sept. 2002. 

[18] W-C Cheng and M. Pedram, “Power-Optimal 
Encoding for a DRAM Address Bus,” IEEE Trans. 
on VLSI Systems, Vol. 10, Issue 2, pp. 109-118, 
April 2002. 


