
Coarse-Grained DRAM Power Management

Jin Hwan Park*, Sarah Wu* and Baback Izadi+
Department of Computer Science*

Department of Electrical and Computer Engineering+
State University of New York at New Paltz

New Paltz, NY 12561, U.S.A.

Abstract− This paper presents an efficient system level
power saving method for DRAM with multiple power
modes. The proposed method is based on the power
aware scheduling algorithm that controls DRAM modules
in coarse grain in which the scheduler assigns
appropriate power modes to memory banks at context
switching time. The method controls the transition of
multiple power modes, which is currently available
technology, based on the history of gaining processor and
memory bank usage of each process. The experimental
results demonstrate the efficiency of the proposed
schemes in multiprogramming environment.

Keywords: low power, DRAM, scheduling, power mode
transition

1. Introduction
Recent growing technology of mobile, handheld, and
embedded systems requires increasing research
efforts on developing low power management
methods in several different aspects. Among those
aspects, reducing energy consumption in the
memory hierarch has been an important issue since
the memory system is a major power consumption
component of the system. Cost of memory is
inexpensive now, but the cost of energy consumed
by memory system is high for those battery
dependable systems. Together with low power
cache design techniques [8, 9, 15, 17] and power
efficient on-chip memory system design techniques
in the embedded systems that replace cache with
small on-chip SRAM module [1, 2, 3], methods for
reducing power in the DRAM have been proposed in
the literature [4, 5, 9, 11, 16]. These efforts are
based on the recent DRAM technology that makes
DRAM module operate in different power modes.
For instance, RAMBUS’s RDRAM technology
provides four different power modes such as active,
standby, napping, and shut-down [12]. Of course
each power mode consumes different amount of
energy, and reactivation from a lower power mode to

a higher power mode requires reactivation cost as
additional cycles. Thus it is important to design
appropriate power management scheme for utilizing
these manufacturer provided technology to the
applications including desk-top to embedded
systems. In DRAM power mode management
researches, both hardware and software based
approaches have been proposed in the literature [4,
5, 11, 16]. In these works, memory bank
partitioning method was used for utilizing the
technological advantages of handling different
power modes by turning down unused banks’ power.
Approaches for selecting appropriate power modes
for partitioned memory banks are grouped into
compiler based, hardware assisted, and operating
system based methods. While each method has its
own pros and cons, we focus on the operating
system based method for reducing power of DRAM
in this paper. More specifically, we develop an
efficient scheme for handing multiple DRAM power
modes for reducing energy consumption at context
switching time that does not require additional
hardware support which consumes extra energy.
Since the approach is a coarse-grained, there exist
not much overhead of the scheme; only the
scheduler is responsible for the operation at the
context switching time. Our study reflects full
multiprogramming environment with simulated
systems under the assumption of contiguous memory
allocation without virtual address spaces. Since the
scheme is generic which does not aim a specific
commercial DRAM model nor a specific platform, it
can be applied to a variety of architectures. Using
the simulated system model, we trace the behavior of
multiprogramming completely for utilizing the
benefit of multiple power modes provided by
manufacturers.
 The remainder of this paper is organized as
follows. Related work is reviewed briefly in Section
2. In Section 3, DRAM power modes and memory

system structure for the experiment are described.
The proposed scheme for reducing DRAM power
dissipation is described in Section 4, followed by the
experimental results in Section 5 and conclusion in
Section 6.

2. Related Work

Efforts for reducing energy consumption by
selectively turning down memory banks’ power are
found in the aspects of compiler based, hardware
assisted, operating system based. Delaluz, et. al. [5]
proposed a compiler-based method for reducing
power on DRAM modules (banks) by determining
idle periods of each memory module at compile
time. Though this method does not have
resynchronization cost overhead since it completely
predicts the memory bank usage at compile time for
the target data, it also has several drawbacks. The
scheme is conservative since not all information are
available/analyzable at compile time, only arrays
and loop constructs are involved in the practice, and
only single programming case was considered. Thus
the approach handles very limited situations and it
assumed the direct mapping of address to the
physical memory (i.e., without virtual memory
space). Udayakumaran, et al. [16] proposed a
compiler-based scheme in which data allocation and
memory partitioning are performed jointly. It uses
application specific partitioning of the scratchpad
memory based on the temporal locality. Self-
monitored run time approaches that need hardware
support were proposed in [5]. The idea is that the
memory system automatically transitions to lower
power modes based on the information captured by
the supporting hardware. Three proposed schemes
were based on adaptive threshold value (ATP), fixed
threshold value (CTP), and history of inter-access
time (HBP). Among them, the history-based
approach showed the best performance. In fact, in
ATP, no direct transition of power modes are
allowed, but only through a higher mode to the one
lower mode serially are allowed. The ATP method
needs extra hardware for making the adaptive
decision that consumes extra energy, and yields the
resynchronization cost with mis-prediction. The
CTP method needs a counter for each memory bank,
and the transition method is the same as the one in
the ATP; i.e., serial from a higher to one lower, but
it showed better performance than the compiler-
based approach proposed in [5]. The HBP method

can transit power mode of a bank directly from
active to a lower power mode, by simply assuming
that the next inter-access time is the same as the
previous inter-access time. Since the compiler based
approaches have certain limitations and hardware
oriented approaches need additional energy
consumptions on those supporting hardware for
checking bank usage, alternative methods based on
the operating system has started appearing in the
literature. In fact, there have been many operating
system based power reduction schemes for
processors and I/O devices, but very few works has
focused on utilizing multiple DRAM power modes
for reducing energy consumed by memory system.
Lebeck, et al. [11] proposed a scheme for reducing
DRAM energy by power aware page allocation
algorithm. Underlying idea is that an application’s
pages are allocated into a minimum number of chips
(banks) and unused banks are in low powered modes
during the execution of the application. The work
considered only single programming case and there
was no consideration of multiprogramming
situations. Delaluz, et al. [4] proposed a scheduler-
based approach of turning down the power of
unused memory banks. The method uses a bank
usage table that managed by the operating system,
and resets all banks’ power modes at the context
switching time. It is a prediction method with mis-
prediction risks since the setting is based only on the
one previous time’s bank usage. These operating
system based methods can be used with hardware
methods if hardware cost (additional energy
consumption) is affordable.

3. DRAM Power Modes and Memory
 System Structure
Partitioning the memory into smaller sized
components can reduce the power consumption
significantly. In this paper, we assume the memory
system consists of smaller modules in rows (banks)
and columns. For the simplicity, we further assume
that each bank consists of one DRAM module that is
operated in four different operation modes; i.e.,
active (attention), standby, napping, and power-
down modes. Figure-1 illustrates the memory
system structure under these assumptions, and
Figure-2 illustrates the DRAM power mode
transitions and costs found in the data sheet from
RMBUS [12]. In this paper, we use normalized
values for measuring energy consumption and

 bank1
 Processor
 bank2

 memory ….
 controller
 bankn

 Figure-1. Memory system structure

resynchronization costs. Thus the values shown in
Figure-2(b) are normalized to constants x and c. In
fact, 8MB RDRAM module consumes 3.57nJ per
cycle in active mode in 3.3V, 2.5ns clock cycle time
technology. In the figure, refined six power modes
are illustrated, but only four modes are
distinguishable because once in ATTN mode, the
device will automatically transition to the ATTNW
and ATTNR modes as it receives WR and RD
commands. Thus in this paper, we use term “active”
for representing the three attention modes shown in
the figure.

 ATTNR auto ATTNW
 auto
 auto
 ATTN

 NAP

 PDN

 STBY

 ATTNR: Attention read mode
 ATTNW: Attention write mode
 ATTN: Attention mode
 STBY: Standby mode
 NAP: Nap mode
 PDN: Power-down mode

 (a) Power mode transition direction

 Power Power Resynchronization
 mode consumption cost

 ATTN 1x nJ 0c ns
 STBY 0.23x nJ 1c ns
 NAP 0.089x nJ 15c ns
 PDN 0.0014x nJ 4,500c ns

 (b) Energy consumption and resynchronization cost

 Figure-2. RDRAM power modes

We consider the following power mode transition
directions in this paper; active to standby, active to
nap, and active to power-down directly, and the
resynchronization cost from each of these low power
modes to active mode are shown in Figure-2(b). We
ignore all other directions and costs in this paper.
 In the ideal case in which the resynchronization
starts in advance with no latency overhead, formula
for measuring the energy consumed in a bank during
its idle time (in a lower power mode) is

 (Tidle – Tresyn) Elow + Tresyn Eact

where, Tidle is the bank’s idle time, Tresyn is the
resynchronization cost, Elow is the unit energy
consumed in the lower power mode, and Eact is the
unit energy consumed in the active power mode.
The term Tresyn*Eact represents the energy needed
during the resynchronization. Based on the above
formula, the gain of using a lower power mode
during the idle time in each bank is:

 Tidle Eact – [(Tidle – Tresyn) Elow + Tresyn Eact]

The term Tidle*Eact represents the energy
consumption without using multiple power modes;
i.e., all modules are in active continuously. Thus
when Tidle > Tresyn, we have the energy gain:

 (Tidle – Tresyn) (Eact – Elow) (1)

4. Context Switching Time Power
 Management
The main idea of controlling DRAM power at
context switching time is that the memory array is
divided into smaller banks and unused banks are
power downed during the entire period of the current
time quantum (or, until the processor is preempted
based on the event). Thus the scheme is coarse
grained; i.e., during the current time quantum (or,
until CPU preemption) no power transitions occur.
Since we can implement the scheme with only
operating system’s modules, this approach does not
require special hardware support that consumes extra
energy. A simple way of utilizing the above idea is
using the contiguous memory allocation to
processes. In fact, the compiler-based approaches
allocate contiguous data memory for arrays into the
same bank as much as possible [5], power aware

paging scheme [11] allocates frames for each
process into contiguous frames that are physically
closed so that pages are distributed to as less banks
as possible. In our experiment with a simulated
system, processes are loaded into contiguous
memory spaces (with best-fit) that are divided into
banks, and at each context switching time, unused
banks (banks except the ones assigned to the running
process) are power downed. At loading time, the
operating system checks which banks are allocated
to the process, and keep the information in the PCB
of each process. Following three possible cases are
considered in the experiment; multiple processes are
allocated to a bank, only one process is allocated to a
bank, and a process is allocated to multiple banks
(i.e., it exceeds the boundary of a bank). Thus, it is
not difficult to figure out which banks will be
unused during the new time quantum until the CPU
is preempted due to the quantum expiration or some
event occurrence (e.g., I/O). When the processor is
preempted, banks that are allocated to the running
process (switching out process) have choices of
selecting lower power modes based on the selection
algorithm. The idea used in the selection algorithm
is that the scheduler checks the process waiting time
history (i.e., how frequently it has been scheduled to
CPU) that is kept in PCB, and selects an appropriate
lower power mode to each idle bank. The selection
algorithm is described in section 4.2.

4.1 Energy Gain
The simplest scheme for saving power of DRAM
banks is turning down unused bank’s power to the
lower power mode if there exist only two power
modes; i.e., active and low. But the consideration is
whether the turning down to the lower mode actually
yields the gain or not. In the case of the switched
out process regains CPU within very short period of
time, turning down to the lower mode yields more
energy consumption because of the resynchroni-
zation cost. For the ideal case in which the
resynchronization starts as early as possible for
eliminating the latency overhead (i.e., extended
time), energy gain is computed using formula (1) in
Section 3. Since our proposed scheme is coarse-
grained and thus it does not start the reactivation at
any time we should use a different formula for
computing the energy gain of using a lower power
mode during the bank’s idle time. For the general
case without considering the early resynchroniza-
tion, the energy gain is

 Tidle Eact – (Tidle Elow + Tresyn Eact)

with the overhead of extended time with the ratio of
 (Tidle + Tresyn) / Tidle

Thus, when Tidle > Tresyn(Eact/(Eact-Elow)), we have
the energy gain:

 Tidle (Eact – Elow) – Tresyn Eact (2)

Figure-3 illustrates the energy consumption during
the bank’s idle time in two cases such as the ideal
case and the case with the latency overhead. During
the resynchronization, energy for the active mode is
consumed as illustrated in Figure-3(b).

 (Elow)
 Tidle Tidle

 Tidle-Tresyn Tresyn Tresyn
 (Elow) (Eact) (Eact)

 (a) ideal case (b) resynchronization latency

 Figure-3. Power consumption during idle time of a bank

From formula (2), we can derive the conditions for
converting to each of standby, nap, and power-down
modes easily. For example with considering only
active and nap modes and 2.5 ns clock cycle time,
when a bank’s idle time is bigger than 82.42 ns
converting to nap mode has energy gain. The
condition for checking whether converting to the
lower power mode yields the gain or not heavily
depends on the bank’s future idle time. We describe
the method of measuring each bank’s idle time in
section 4.2.

4.2 Selection from Multiple Power Modes
Based on the formula (2) in section 4.1, we can
generalize the power mode selection scheme for the
multiple power modes. For measuring each bank’s
future idle time, we use the accumulated average of
each process’s waiting time for predicting the period
of the future idleness. In fact there have been
proposed many prediction methods for saving
energy of devices in the literature, but we use the
accumulated average method for the simplicity in
this paper. Algorithm-1 describes the multiple
power mode selection scheme at context switching

time. Measuring the accumulated average waiting
time for processes is also described in the algorithm.
Since we keep the information of allocated bank(s)
to a process in the PCB, we can easily find the
corresponding bank(s) for updating the power mode.

Algorithm-1.
 Assume: In each PCB, wall clock times for CPU
 release/regain are kept.

 for each process,
 {at context switching in time,
 {compute current wait time (Tw):
 Tw = Treg – Trel;
 //Treg and Trel represent CPU regain
 //and release times respectively
 update accumulated ave. wait time (Taw):
 Taw = [Taw * (n-1) + Tw] / n;
 //n represents number of times this
 //process has gained CPU so far
 }

 at context switching out time,
 {select a power mode from standby, nap,
 and power-down:
 find max of:
 Taw (Eact – Estby) – Tresyn-stby Eact
 Taw (Eact – Enap) – Tresyn-nap Eact
 Taw (Eact – Epdn) – Tresyn-pdn Eact

 if (max > 0)
 set the corresponding bank’s power
 mode to max’s mode
 else
 no operation //keep active
 }
 }//for each process

In Algorithm-1, the accumulated average waiting
time (Taw) for the process is used for the predicted
idle time of the bank (Tidle). Thus Taw is an
approximation of Tidle. Terms for the energy in the
algorithm such as Eact, Estby, Enap, and Epdn represent
unit energy consumptions in active nap, and power-
down modes respectively. Terms for the time such
as Tresyn-stby, Tresync-nap, and Tresyn-pdn represent
resynchronization latencies (times) for standby, nap,
and power-down modes respectively.
 Since the algorithm checks PCB’s of CPU
releasing and gaining jobs only at the context
switching time, the overhead of using the scheme is
minimal, but it yields a remarkable amount of gain.

5. Experimental Results
The proposed scheme was tested on the simulated
system. The simulation system model includes
RISC based CPU simulator and traditional
multiprogramming/time-sharing operating system
that manages queues for holding ready processes and
I/O blocked processes. CPU is preempted when the
current time quantum expires or an I/O event occurs.
The long-term scheduler (loader) selects jobs from
job pool (we assume that all jobs arrived at time 0
and are available). In the system, memory is divided
into 6 banks (one module per bank) and contiguous
allocation with best-fit is used. By running 120
programs in the simulated system, we traced the
behavior of the multiprogramming.
 For the performance measurement, we tested
following cases for demonstrating the efficiency of
the proposed scheme:
 do-nothing: all 6 banks are in active mode
 active-nap: idle banks converts to nap mode only
 active-standby-nap: idle banks converts to either
 standby mode or nap mode
In the later two cases, the scheme checks condition
for the positive energy gain and keeps the active
mode when the condition does not meet, as
described in formula (2) and Algorithm-1. We
excluded power-down mode from the experiment
since the average execution time of testing programs
was much shorter than the resynchronization cost of
power-down mode. Following figures show the
performance of the scheme using normalized values.

1

0.34
0.31

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 mode 2 modes 3 modes

Method

P
ow

er
 c

on
su

m
pt

io
n

(n
or

m
al

iz
ed

)

 Figure-4. Power consumption v.s. methods

0.3
0.32 0.31 0.3 0.31

0.33
0.35 0.34 0.33 0.34

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q=0.07S Q=0.15S Q=0.22S Q=0.29S Q=0.37S

Quantum size (normalized)

P
ow

er
 c

on
su

m
pt

io
n

(n
or

m
al

iz
ed

)

3 modes 2 modes

 Figure-5. Power consumption v.s. time quantum

Figure-4 shows that using active-nap modes and
using active-standby-nap modes save DRAM power
66% and 69% respectively. Thus it reflects the
concept that using more power modes saves more
energy. Figure-5 shows the results of applying
varying size of the time quantum. Quantum values
shown in the graph are normalized to the average
execution time of processes (s). In our experiment,
varying size of the time quantum did not
significantly affect the performance of the scheme,
and showed better performance of 3-modes method
with all quantum values tested. Though our
experiment was limited the results successfully
demonstrated the benefit of using context switching
time power management scheme that does not
require any special hardware support. As other
operating system based approaches, the proposed
scheme can be used with hardware based approaches
for gaining further energy saving.

6. Conclusion and Discussion
In this paper, we described an operating system
based approach for saving DRAM power. The
approach is coarse-grained since it operates only at
context switching time without causing considerable
overheads. Formulas for evaluating the condition of
gaining power are developed and an algorithm for
selecting appropriate power mode is designed based
on that. For measuring each process’s CPU
accessing frequency, we used a simple accumulated

average method that approximates the predicted idle
time of the bank. The experimental results showed
successful performance of the scheme in
multiprogramming environment. Though our tests
are limited yet, it demonstrated the benefit of using
the scheme that can be used with other approaches
such as hardware supported approaches shown in the
literature.
 Future study should focus on developing high
performance prediction method for measuring future
idle time of the bank and experimenting on real
systems.

REFERENCES

[1] L. Benini, A. Macii, E. Macii, and M. Poncino,

“Synthesis of Application-Specific Memories for
Power Optimization in Embedded Systems,” Proc. of
37th Design Automation Conference (DAC 2000), pp.
300-303, June 2000.

[2] Benini, A. Macii, and M. Poncino, “A Recursive
Algorithm for Low-Power Memory Partitioning,”
Proc. of the 2000 Intl. Symposium on Low Power
Electronics and Design, pp. 78-83, 2000.

[3] Y. Cao, H. Tomiyama, T. Okuma, and H. Yasuura,
“Data Memory Design Considering Effective
Bitwidth for Low-Energy Embedded Systems,” Proc.
of IEEE/ACM Intl. Symposium on System Synthesis
(ISSS’2002), Oct. 2002.

[4] V. Delaluz, A. Sivasubramaniam, M. Kandemir, N.
Vijaykrishnan, and M. J. Irwin, “Scheduler-Based
DRAM Energy Management,” Proc. of 39th Design
Automation Conference (DAC’2002), pp. 697-702,
2002.

[5] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A.
Sivasubramaniam, and M. J. Irwin, “DRAM Energy
Management Using Software and Hardware Directed
Power Mode Control,” Intl. Symposium on High
Performance Computer Architecture (HPCA-7), pp.
159-169, Jan. 2001.

[6] T. D. Givargis, F. Vahid, and J. Henkel, “A Hybrid
Approach for Core-Based System-Level Power
Modeling,” Proc. of the 2000 Conference on Asia
and South Pacific Design Automation, pp. 141-146,
2000.

[7] P. Grun, N. Dutt, and A. Nicolau, “Memory Aware
Compilation Through Accurate Timing Extraction,”
Proc. of 37th Design Automation Conference
(DAC’2000), pp. 316-321, June 2000.

[8] K. Inoue, A. G. Moshnyaga, and K. Murakami,
“Trends in High-Performance, Low-Power Cache
Memory Architectures,” IEICE Trans. on
Electronics, Vol. E85-C, No. 2, pp. 304-314, Feb.
2002.

[9] M. J. Irwin and V. Narayanan, Low Power Design:
From Soup to Nuts, ISCA’2000 Tutorial, 2000.

[10] M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W.
Ye, “Influence of Compiler Optimizations on System
Power,” Proc. of 37th Design Automation Conference
(DAC 2000), pp. 304-307, June 2000.

[11] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power
Aware Page Allocation,” Proc. of 9th Intl. Conference
on Architectural Support for Programming
Languages and Operating Systems, pp. 105-116,
Nov. 2000.

[12] Rambus Inc. http://www.rambus.com/
[13] M. Sekine and J. H. Park, “An Efficient Low Power

Hybrid Memory System for Mobile Computers,”
Proc. of the 2001 Intl. Conference on Parallel and
Distributed Processing Techniques and Applications,
pp. 979-985, June 2001.

[14] Y-H Lu, L. Benini, and G. D. Micheli, “Operating-
System Directed Power Reduction,” Proc. of Intl.
Symposium on Low Power Electronics and Design,
pp. 37-42, July 2000.

[15] W-T Shiue and C. Chakrabarti, “Memory
Exploration for Low Power, Embedded Systems,”
Proc. of 36th Design and Automation Conference
(DAC’99), June 1999.

[16] S. Udayakumaran, B. Narahari, and R. Simha,
“Application-Specific Memory Partitioning for Low
Power Consumption,” Proc. of Workshop on
Compiler and Operating Systems for Low Power
(COLP 2002), Sept. 2002.

[17] Y. Zhu and F. Mueller, “Preemption Handling and
Scalability of Feedback DVS-EDF,” Proc. of
Workshop on Compilers and Operating Systems for
Low Power (COLP 2002), Sept. 2002.

[18] W-C Cheng and M. Pedram, “Power-Optimal
Encoding for a DRAM Address Bus,” IEEE Trans.
on VLSI Systems, Vol. 10, Issue 2, pp. 109-118,
April 2002.

