
A MULTI-MODE FAULT-TOLERANT HYPERCUBE MULTIPROCESSOR

BABACK A. IZADI F ÜSUNÖZGÜNER
Dept. of Elect. and Comp. Engineering Dept. of Elect. Engineering

State University of New York The Ohio State University
New Paltz, NY 12561 U.S.A. Columbus, Ohio 43210 U.S.A.

bai@engr.newpaltz.edu ozguner@ee.eng.ohio-state.edu

Abstract
In this paper, we present a real-time fault-tolerant de-

sign for a d-dimensional hypercube multiprocessor with two
modes of operations and examine its reconfigurability. The
augmented hypercube, at stage one, has a spare node con-
nected to each node of a subcube of dimension i, and the
spare nodes are also connected as a (d � i)-dimensional
hypercube. At stage two, the process is repeated by assign-
ing one spare node to each (d � i � j)-dimensional spare
subcube of stage one. We consider two modes of opera-
tions, one under heavy computation or hard deadline and
the other under light computation or soft deadline. By utiliz-
ing the capabilities of wave-switching communication mod-
ules of the spare nodes, faulty nodes and faulty links can be
tolerated. Both theoretical and simulation results are pre-
sented. Compared with other proposed schemes, our ap-
proach can tolerate significantly more faulty components
with a low overhead and no performance degradation.

Keywords: real time, fault tolerance, hypercube, aug-
mented multiprocessor, wave switching

1 Introduction
As the size of the hypercube multicomputer grows the

probability of node and/or link failures becomes high. A
common way to sustain the same level of performance in
the presence of faults has been to augment the hypercube
with spare nodes and/or spare links to replace the faulty ones
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. In a real-time fault-tolerant
system, faulty components have to be replaced with spares
in a manner that also satisfies the required completion dead-
line. Two modes of operation is generally considered: the
strict mode and therelaxed mode. The strict mode pertains
to tasks whose computational requirements are heavy or
have a hard completion deadline. The relaxed mode, on the
other hand, consists of tasks with a soft completion dead-
line or a light computational load. A real-time fault-tolerant
system needs to replace faulty components with spares in
a manner that the required computational load and/or com-
pletion deadline are also satisfied. Therefore, in the strict
mode of operation, in order to allow for fast reconfigura-
tion, spare replacement of faulty components should result
in very few changes in the system interconnections. A com-
mon approach to accommodate this mode of operation is

to replace each faulty component with the local spare using
a distributed reconfiguration algorithm [12]. On the other
hand, in the relaxed mode of operation, a global reconfigu-
ration algorithm is applied to maximize the probability that
in the next strict mode of operation, there exists a local spare
for every faulty component.

In this paper, we present a two-stage redundant scheme
for the hypercube. The objectives of the scheme are two
fold. First, facilitate real-time fault tolerance by allowing
the system to operate in either the strict mode or the relaxed
mode. Second, utilize the spare network to tolerate a large
number of faculty nodes and faulty links.

The rest of the paper is organized as follows. In the next
section, notation and definitions that are used throughout the
paper are given. An overview of our approach is presented
in Section 3. In Section 4, we examine the reconfigurabil-
ity of the scheme. Both theoretical and simulation results
are presented. Finally, concluding remarks are discussed in
Section 5.

2 Definitions and Notation
Each regular node of ad-dimensional hypercube is de-

noted byd-tuple (bd�1 � � � bi � � � b0), wherebi 2 f0; 1g. A
subcube is defined by a uniqued-tuple f0; 1; Xg

d where “0”
and “1” are thebound coordinates, and\X” represents the
free coordinates. A(d � k)-dimensional subcube is repre-
sented by ad-tuple with k bound coordinates and(d�k) free
coordinates. Each spare node is uniquely defined byd-tuple
f0; 1; Sgd where “0” and “1” represent the bound coordi-
nates andS corresponds to the free coordinates of the spare
node’s assigned cluster. A regular link is specified uniquely
by d-tuple f0; 1;-gd where “-” can be substituted by “0” or
“1” to identify its connecting nodes. An intra-cluster spare
link (a link connecting the spare node of stage one to a reg-
ular node of its cluster, or a link connecting the spare node
of stage two to a spare node of its cluster at stage one) is de-
fined by a(d+1)-tuple f0; 1; Sg(d+1) whereS is inserted to
the left of the(i� 1)th bit of the regular node ID, to which
the spare node is connected. For example, the intra-cluster
spare link connecting the spare node00SS and node0001
is identified as00S01. An inter-cluster spare link (a link
connecting two spare nodes at either stage one or stage two)
is defined by ad-tuple f0; 1; S;-gd where “-” can be substi-
tuted by “0” or “1” to identify its connecting spare nodes.
Hence, the inter-cluster spare link connecting spare nodes

01SS and00SS is labeled 0-SS. Finally, we define the
connection requirement (CR) of a spare node in a cluster
with multiple faulty nodes as the number of edge-disjoint
paths that must be constructed within the spare cube from
that spare node to other spare nodes in the fault-free clusters
so that faulty nodes can be tolerated.

3 Overview of the TECH
In our scheme, at stage one, thed-dimensional hyper-

cube is divided into2(d�i) subcubes of dimensioni; we call
each of these subcubes a cluster. One spare node is assigned
to each cluster; the spare node is connected to every regu-
lar node of its cluster via an intra-cluster spare link. Spare
nodes are also interconnected to form a(d� i)-dimensional
spare cube using inter-cluster spare links. We call the re-
sultant structure theenhanced cluster hypercube (ECH) [1].
Figure 1 depicts an ECH of dimensiond = 4 with clusters
of dimensioni = 2. At stage two, the process is repeated:

Spare Node

1111

1011

0110

0100

0000

0010

00SS 0001

0011

0101

01SS 0111 1110

1100

1000

1010

1101

1001

11SS

10SS

Regular Node Spare LinkRegular Link

Figure 1: ECH of dimension 4

the spare nodes of stage one are also divided into2(d�i�j)

clusters of dimensionj and one spare node from stage two
is assigned to each of these clusters. Moreover, the spare
nodes at stage two are interconnected as a (d � i � j)-
dimensional spare cube. We call the resultant structure the
two-stage enhanced cluster hypercube (TECH). Figure 2 de-
picts a TECH of dimensiond = 4 with i = 2 andj = 1.
Each regular node in a TECH is connected to itsd neighbor-
ing regular nodes and the local spare node at stage one. Each
spare node at stage one is connected to2i regular nodes of
its local cluster, its (d� i) neighboring spare nodes at stage
one, and its assigned spare node at stage two. Each spare
node at stage two is connected to2j spare nodes of its local
cluster of stage one and its (d � i � j) neighboring spare
nodes at stage two. Therefore, the degree of each regular
node, each spare node at stage one, and each spare node at
stage two are(d+1), (2i+d�i+1), and(2i�j+d�i�j),
respectively.

We next describe how the TECH tolerates faulty nodes
and faulty links. Each node is made of a computa-
tion module and a wave-switching communication mod-
ule [13]. Wave-switching implements circuit-switching
and wormhole-switching concurrently; permanent connec-
tions and long messages use the circuit-switched segment
while short messages are transmitted using the wormhole-
switching. We assume that faulty nodes retain their ability

1111

1011

0110

0100

0000

0010

00SS 0001

0011

0101

01SS 0111 1110

1100

1000

1010

1101

1001

11SS

10SS

S1SS

S0SS

Spare Node Stage 1 Spare Node Stage 2Regular Node
Regular Link Spare Link Stage 1 Spare Link Stage 2

Figure 2: TECH of dimension 4

to communicate. This is a common assumption since the
hardware complexity of the communication module is much
lower than the computational module. Therefore, the proba-
bility of failure in the communication module is much lower
than the computation module. This assumption may be
avoided by duplicating the communication module in each
node. To tolerate a faulty node, the computation module of
the spare node logically replaces the computation module
of the faulty node. In addition, if the spare node resides in
the cluster of the faulty node, the new communication mod-
ule consists of the functional communication module of the
faulty node merged with the appropriate routing channel of
the local spare node. If the assigned spare node and the
faulty node belong to different clusters, a dedicated path is
constructed by linking the appropriate routing channels of
the intermediate spare nodes. Once such a path is estab-
lished, due to the circuit-switched capability of the wave-
switching communication modules, the physical location of
the faulty node and its assigned spare node becomes irrel-
evant. Moreover, no modification of the available compu-
tation or communication algorithm is necessary. Similarly,
faulty links are bypassed by establishing parallel paths us-
ing spare links. Figure 3 illustrates the reconfiguration of a
TECH with d = 4, i = 2, andj = 1 in the presence of
indicated faulty nodes and faulty links. For the sake of clar-
ity, in Figure 3, non-active spare links are deleted and active
spare links are drawn in a variety of line styles to distinguish
the bypass paths. Note that by utilizing spare nodes from
other fault-free clusters, in effect, four logical spare nodes
are present in cluster11XX . Figure 4 illustrates how spare
nodes 01SS and 11SS replace faulty nodes 1100 and 1110,
respectively, by merging their communication module. The
heavy and dashed lines in Figure 4 pertain to similar lines in
Figure 3 and represent effective permanent circuit-switched
connections after the reconfiguration.

4 Reconfigurability of the TECH
To allow for fast reconfiguration in the strict mode of op-

eration, the reconfiguration algorithm should result in mini-
mum changes in system interconnections. Hence, under the
strict mode of operation, each faulty node of a cluster is re-
placed by the local spare node at stage one. The algorithm is
applied distributively, allowing each spare node at stage one
to monitor the status of the regular nodes within its cluster,

1111

1011

0110

0100

0000

0010

00SS 0001

0011

0101

01SS 0111 1110

1100

1000

1010

1101

1001

11SS

10SS

X

X

Healthy Node

Faulty Node
Faulty LinkXSpare Node Stage 1

Spare Node Stage 2

S1SS

S0SS

Figure 3: Reconfiguration of a TECH

X

0
1
2
3

0
1
2
3

X
Spare Ch1

Spare In

X

0
1
2
3

0
1
2
3

X

1100 1110

01SS 11SS

Spare Out

00
01
10
11

00
01
10
11

00
01
10
11

00
01
10
11

0
1

0
1

0
1

0
1

Spare OutSpare In

Spare OutSpare In Spare OutSpare In

1 1 1 1

2 2 2 2

Figure 4: Replacing faulty nodes 1100 and 1110 with spare
nodes 01SS and 11SS, respectively

and replace the faculty node as outlined in the previous sec-
tion. The reconfiguration algorithm under the strict mode of
operation fails if more than one node becomes faculty in a
cluster.

The reconfiguration algorithm in the relaxed mode of op-
eration first tries to assign each detected faulty node to a
spare node at stage two. This is done to make the spare
nodes at stage one available for the next strict mode of oper-
ation. For example, in Figure 2, in the relaxed mode of op-
eration, the task of faulty nodes 0110 and 0000 are assigned
to spare nodesS1SS andS0SS while in the strict mode of
operation, they would be assigned to the local spare nodes
01SS and00SS, respectively. Under the relaxed mode of
operation, if there is no available unassigned spare node at
stage two, a spare node from stage one is assigned to the
faulty node; details of reconfiguration algorithm under the
relaxed mode of operation is discussed in Section 4.2.

4.1 Theoretical Results
From the previous section it follows that the reconfigura-

bility of the TECH is a function of the number of dedicated
and edge-disjoint paths, within the spare network at stages
one and two, that can be established between the local spare
node of a cluster with multiple faulty nodes and the avail-
able spare nodes in the fault-free clusters. The availability of

these edge-disjoint paths is a connectivity issue within the
spare network. The following theorems examine the con-
nectivity of the spare network and establish bounds on the
number of faulty nodes that a TECH can tolerate.

Theorem 1 A d-dimensional TECH with clusters of dimen-
sion i, at stage one, can at most tolerate (d � i+ 2) faulty
nodes in one cluster.

Proof: Given a cluster, at stage one, with multiple faulty
nodes, the local spare node can replace one of them. Since
the local spare node, at stage one, has a degree of(d� i+1)
within the spare network, at most(d � i+ 1) edge-disjoint
paths may be constructed from it to unassigned spare nodes.

Theorem 2 A d-dimensional TECH with clusters of dimen-
sion i, at stage one, can tolerate (d � i + 2) faulty nodes
regardless of the fault distribution.

Proof: We first show, by induction, that a TECH at stage
one can tolerate(d � i + 1) faulty nodes regardless of the
fault distribution. The TECH at stage one is simply an ECH
of dimensiond with clusters of dimensioni. The base case
is shown ford = i. There exists one spare node which is
connected to each of the2d regular nodes. Upon failure of
any one regular node, the spare node can replace it directly.
Therefore, the ECH can tolerated� i+ 1 = 1 faulty node.

Next, let us consider an ECH of dimensiond = i+ (k�
1): each cluster has a dimensioni = d � (k � 1) and the
dimension of the spare cube isd � i = (k � 1). Let us
assume that the(i + k � 1)-dimensional ECH can tolerate
(d � i) + 1 = (k � 1) + 1 = k faulty nodes. Keeping the
cluster size constant, consider an ECH of dimensiond =
i + k. The dimension of the spare cube is thend � i = k.
Let us split the(i+k)-dimensional ECH along a dimension
l such thatl > i. Consequently, the regular nodes of the
two (i+ k � 1)-dimensional subcubes are connected along
the dimensionl; they form a matching along the dimension
l. Likewise, the spare nodes of the two(k� 1)-dimensional
spare cubes are connected along the dimension(l � i) of
the spare cube. By the induction hypothesis, each(i+ k �

1)-dimensional ECH can toleratek faulty nodes. Suppose
there exist(k + 1) faulty nodes. If the distribution of faulty
nodes is such that at least one of them is in one(i + k �

1)-dimensional ECH while the rest reside in the other half,
the system can tolerate the faulty nodes by the induction
hypothesis. Consider the case where all faulty nodes reside
in the same(i + k � 1)-dimensional ECH.k of the faulty
nodes can be tolerated in the same subcube. Since every
faulty node has an unused spare link to its local spare node
and the local spare node has an unused spare link in the
dimension(l � i) to an unassigned spare node within the
fault-free half of the ECH, a dedicated path within the spare
cube between the(k + 1)th faulty node and the unassigned
spare node can be established. The system can therefore
tolerate(k + 1) faulty nodes, and it follows by induction
that (d � i + 1) faulty nodes can be tolerated within the
spare cube at stage one.

Finally, consider the TECH at stages one and two. Since
the (d � i + 2)th faulty node has an available edge con-
necting it to the local spare node, at stage one, and the local
spare node has an unused spare link connecting it to a spare
node at stage 2, a dedicated path between the (d � i + 2)th
faulty node and the spare node at stage 2 can be established.
The system can therefore tolerate(d � i + 2) faulty nodes
regardless of the distribution of faulty nodes.

We next set the bounds on the number of faulty nodes
per cluster, under the maximum number of faulty nodes
(2(d�i) + 2(d�i�j)), that the TECH can tolerate. Our proof
uses the following theorem from [1].

Theorem 3 A d-dimensional ECH with clusters of dimen-
sion i can tolerate 2(d�i) faulty nodes with up to three faulty
nodes per cluster regardless of the fault distribution.

Theorem 4 A d-dimensional TECH with clusters of dimen-
sion i, at the first stage, and clusters of dimension j, at the
second stage, can tolerate 2(d�i) + 2(d�i�j) faulty nodes,
regardless of the fault distribution, provided that the maxi-
mum number of faulty nodes in each subcube of dimensions
i and i+ j is 4 and 3(2j + 1), respectively.

Proof: Consider the regular hypercube and the spares of the
TECH at stage one only. The topology is that of an ECH
of dimensiond with clusters of dimensioni; let us refer to
it as the ECH-1. Likewise, the ECH-2 of dimensiond with
clusters of dimensioni + j can be formed by utilizing the
regular hypercube and the spares of the TECH at stage two.
Under the structure of the ECH-2, spare nodes of the TECH
at stage one simply function as intermediate hops, and we
can ignore the inter-cluster spare links of stage one. By The-
orem 3, the ECH-2 can tolerate2(d�i�j) faulty nodes with
up to three faulty nodes per subcube (cluster) of dimension
i+ j. Likewise, the ECH-1 can tolerate2(d�i) faulty nodes
with up to three faulty nodes per subcube of dimensioni.
Hence, the total number of faulty nodes that the TECH can
tolerate is2(d�i�j) + 2(d�i).

Next, consider a subcube of dimensioni+ j. Within this
subcube, there exists2j subcubes of dimensioni. Hence,
the maximum number of tolerated faulty nodes within a sub-
cube of dimensioni + j is 3 � 2j (due to the ECH-1) plus
3 (due to the ECH-2) for a total of3(2j + 1). Within this
constraint, each subcube of dimensioni can tolerate three
and one faulty nodes due to the ECH-1 and the ECH-2, re-
spectively, for a maximum total of four.

From Theorem 4 it follows that the reconfiguration of
the TECH, under the maximum number of faulty nodes, is
guaranteed provided that the number of edge-disjoint paths
that must be initiated from each spare node at stage one and
stage two be limited to three and two, respectively; the max-
imum CR of each spare node at stage one be three and at
stage two be two. The result of Theorem 4 could be ex-
tended to a hypercube with multi-stage redundancies.

Theorem 5 A d-dimensional enhanced cluster hypercube

with k-stage redundancies can tolerate
Pk

l=1 2
(d�
P

k

l=1
il)

faulty nodes provided that the maximum CR of every spare
node at stage k is two and every other stage is three, respec-
tively.

4.2 Simulation Results
From our theoretical results, it follows that, in the relaxed

mode of operation, some patterns of five faulty nodes per
cluster can cause the reconfiguration of the TECH to fail.
However, the probability that the faulty nodes can form such
patterns is very low. Therefore, a more realistic measure of
the reconfigurability of the TECH would be under random
fault distributions. We next examine the simulation results
based on the following reconfiguration algorithm. An opti-
mal reconfiguration algorithm can be developed by utilizing
the maxflow algorithm [15]. The main drawback to a recon-
figuration using the above algorithm is that a digraph repre-
sentation of the spare network has to be constructed [14] and
the spare node assignment has to be done by the host pro-
cessor. To overcome these deficiencies, we next present a
near-optimal reconfiguration algorithm. The algorithm con-
sists of four parts as specified below:
1. Early abort: The following solvability checks are per-
formed to determine whether the reconfiguration is feasible.
If the total number of faulty nodes is greater than the num-
ber of spare nodes(2(d�i) + 2(d�i�j)), the reconfiguration
fails. If the CR of a spare node at stage one is greater than
(d� i+ 1), the reconfiguration fails due to Theorem 1.
2. Assignment at stage two: We utilize Lee’s path-finding
algorithm [16] to find a set of candidate spare nodes at stage
two that can be assigned to the faulty node. The algorithm
begins by constructing a breadth-first search of minimum
depthk (1 � k � 2(d�i�j) � 1) in the spare cube of stage
two from the local spare node of a faulty cluster. If a free
spare node is found, a path is formed to the faulty node.
The algorithm guarantees that a path to a spare node will
be found if one exits and the path will be the shortest pos-
sible [16]. Once a path is formed, the links associated with
that path are deleted from the spare tree, resulting in a new
structure. If there still remain some uncovered faulty nodes,
a solvability test similar to step 1 is performed on the new
structure and this step is repeated for a higher depthk in
stage two of the spare cube.
3. Local assignment: If all spare nodes at stage two are
assigned and there still remain some faulty nodes, the lo-
cal spare node of every faulty cluster is assigned to a faulty
node within the cluster.
4. Assignment at stage one: If there remain additional
faulty nodes, we apply Lee’s path-finding algorithm to both
stages one and two from the local spare node of a faulty
cluster with an unassigned faulty node. Reconfiguration
fails if k > 2(d�i) + 2(d�i�j), which is the longest acyclic
path in the spare network.

We implemented the reconfiguration algorithm for a
TECH with d = 20, i = 10, andj = 3. 1000 simulation

runs were performed for each given number of faulty nodes.
The result of our simulations, under the random fault dis-
tribution, indicate100% reconfiguration in the presence of
up to 1152 faulty nodes (the maximum). To compare the
fault tolerant capability of the TECH with other schemes,
we first simulated the reconfigurability of an ECH (a TECH
with spare nodes only at stage one) ofd = 20 andi = 10;
this is done since most fault-tolerant hypercube schemes in
the literature have only one level of redundancy. Simulation
result of the ECH for up to1024 randomly placed faulty
nodes is shown in Figure 5 as plot G4. Plots G1, G2, and
G3 in the figure pertain to the schemes proposed by [3, 17],
[7], and [6], respectively; compared to other schemes in the
literature, the selected ones tolerate more faulty nodes for
similar hardware overhead. The result indicates100% re-
configuration of the ECH in the presence of up to maximum
number of faulty nodes.

0

20

40

60

80

100

200 400 600 800 1000

o

o

o o o o o o o o o o o o o o o o o o

Number of Faulty Nodes

P
er

ce
nt

 R
ec

on
fig

ur
ed

Reconfigurability Under Random Fault Distribution

G1: Cluster hypercube o

G4: Enhanced cluster hypercube *

Dimension of hypercube = 20

Dimension of each cluster = 10

Number of spare nodes = 1024

G3: Alam & Melhem‘s sys2 +

G2: Alam & Melhem‘s chan. mux. x

G1

G2

G3

G4* * * * * * * * * * * * * * * * * * * *+

+

+

+

+
+ + + + + + + + + + + + + + +

x

x

x

x x x x x x x x x x x x x x x x x

Figure 5: Reconfigurability of the ECH under random fault
distribution

We next compared the reconfigurability of the TECH and
the ECH under the maximum number of faulty nodes such
that each cluster contains a fixed number of faulty nodes.
Figure 6 depicts the simulation results for the hypercube of
dimension ten; the solid and the dashed lines in the figure
pertain to the result of the TECH under 1152 faulty nodes
and the ECH under 1024 faulty nodes, respectively. The
result indicates that, under the maximum number of faulty
nodes, the TECH can handle one more faulty node per clus-
ter than the ECH. The result is interesting since the degree
of the spare node of the TECH at stage one is also higher
than the ECH by one. To examine whether the same result
would be attained under different dimension of spare cubes
at stage one and stage two, simulation runs under the fol-
lowing spare cube dimensions were carried out. We chose
the dimension of the spare cube for the ECH and the spare
cube for the TECH at stage one to be eight. Furthermore,
for the TECH, two different dimensions of the spare cubes
at the second stage were examined, one with a dimension of
five and the other with a dimension of four. The simulation

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12

Number of Faulty Nodes per Faulty Cluster

P
er

ce
nt

 R
ec

on
fig

ur
ed

The Reconfigurability of the ECH Versus the TECH

Dimension of hypercube = 20

Dimension of spare cube at stage 1 = 10

Dimension of spare cube at stage 2 = 7

Nf = Total number of faulty nodes

ECH
Nf=1024

TECH
Nf=1152

Figure 6: Reconfigurability of a TECH versus an ECH un-
der random fault distribution

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Number of Faulty Nodes per Faulty Cluster

P
er

ce
nt

 R
ec

on
fig

ur
ed

The Reconfigurability of the ECH Versus the TECH

Dimension of hypercube = 20

DS=Dimension of spare cube

Nf = Total number of faulty nodes

Ds=8
Nf=256

Ds=8,5

ECH

TECH

Nf=288

Ds=8,4
Nf=272

Figure 7: Reconfigurability of the TECH versus the ECH
under random fault distribution

results are shown in Figure 7; the result of the TECH with
the spare cube of dimension four at stage two is shown with
a solid line. The results confirm that the TECH, under the
maximum number of faulty nodes, can tolerate one more
faulty node per cluster than the ECH, and therefore has a
higher degree of reconfigurability. The results further illus-
trate that the reconfigurability of the TECH with a smaller
spare cube at the second stage is slightly better. This is
mainly due to the fact that our simulation requires the TECH
with a larger spare cube at the second stage to tolerate more
faulty nodes. Simulation results of Figures 6 and 7 further
reveal that the existence of a second stage of redundancy
is more critical to the higher reconfigurability of the TECH
than the size of the spare cube at the second stage. Hence,
multi-stage redundancy should only marginally enhance the
reconfigurability of the hypercube over the TECH, since the
degree of the spare node at stage one is (d�i+1) regardless
of the number of spare stages or their dimensions.

As indicated in the previous section, the TECH can also
tolerate faulty links. However, no theoretical lower bound
on the number of tolerated faulty links can be established,
since two or more faulty links sharing a node in a TECH will
cause the reconfiguration to fail. For example, in Figure 2, if
the links 0-00 and 000- are faulty, the reconfiguration fails,
since the spare link 00S00 has to be used by two dedicated
parallel paths to bypass the faulty links. Therefore, only
simulation result can be examined. In addition, since some
faulty links can only have one bypass path, no distinction
between the relaxed and the strict mode of operation can be
made. In general, the simulation results of the TECH, based
on random distribution of faulty links, is slightly better than
the simulation results of the ECH [1].

5 Conclusion
In this paper, we proposed a scheme to allow a hypercube

multiprocessor tolerate faulty nodes in real time. During the
strict mode of operation, the scheme uses local reconfigu-
ration, which is the fastest and involves the fewest switch
changes. Then, in the next relaxed mode of operation the
tasks of local spare nodes, at stage one, are transferred to
the spare nodes at the second stage by applying a global re-
configuration scheme. If a node becomes faulty during the
relaxed mode of operation, the scheme tries to assign a spare
node at stage two to replace it. This is done to maximize
the probability that in the next strict mode of operation lo-
cal spare nodes may be available to replace potential faulty
nodes. Our theoretical results indicate that our scheme can
always tolerate the maximum number of faulty nodes with
up to four faulty nodes per cluster at stage one. Our experi-
mental results suggest that, under random fault distribution,
the maximum number of faulty nodes can be tolerated with
a very high probability.

References
[1] B. Izadi, F. Özgüner, and A. Acan, “Highly fault-

tolerant hypercube multicomputer,”IEE Proceedings
on Computers and Digital Techniques, vol. 146,
pp. 77–82, March 1999.

[2] P. Banerjee and M. Peercy, “Design and evaluation of
hardware strategies for reconfiguring hypercubes and
meshes under faults,”IEEE Transactions on Comput-
ers, vol. 43, pp. 841–848, July 1994.

[3] S. C. Chau and A. L. Liestman, “A proposal for a fault-
tolerant binary hypercubes architecture,”Proceedings
of the IEEE International Symposium on Fault Toler-
ant Computing, pp. 323–330, 1989.

[4] P. Banerjee, “Strategies for reconfiguring hypercubes
under faults,”Proceedings of the IEEE International
Symposium on Fault Tolerant Computing, pp. 210–
217, 1990.

[5] P. Banerjee, J. Rahmeh, C. Stunkel, V. Nair, K. Roy,
V. Balasubramanian, and J. Abraham, “Algorithm-
based fault tolerance on a hypercube multiprocessor,”

IEEE Transactions on Computers, vol. 39, pp. 1132–
1145, September 1990.

[6] M. Alam and R. Melhem, “An efficient modular spare
allocation scheme and its application to fault toler-
ant binary hypercubes,”IEEE Transactions on Parallel
and Distributed Systems, vol. 2, pp. 117–126, January
1991.

[7] M. Alam and R. Melhem, “Channel multiplexing in
modular fault tolerant multiprocessors,”Proceedings
of the IEEE International Conference on Parallel Pro-
cessing, pp. I492–I496, 1991.

[8] J. P. Hayes, “A graph model for fault-tolerant com-
puting systems,”IEEE Transactions on Computers,
vol. c-25, pp. 875–884, September 1976.

[9] J. Bruck, R. Cypher, and C. T. Ho, “Efficient fault-
tolerant mesh and hypercube architectures,”Proceed-
ings of the 22nd Annual International Symposium on
Fault Tolerant Computing, pp. 162–169, July 1992.

[10] J. Bruck, R. Cypher, and C. T. Ho, “Wildcard di-
mensions, coding theory and fault-tolerant meshes and
hypercubes,”Proceedings of the 23nd Annual Inter-
national Symposium on Fault Tolerant Computing,
pp. 260–267, July 1993.

[11] S. Dutt and J. P. Hayes, “Designing fault-tolerant sys-
tems using automorphisms,”Journal of Parallel and
Distributed Computing, no. 12, pp. 249–268, 1991.

[12] R. Libeskind-Hadas, N. Shrivastava, R. Melhem, and
C. Liu, “Optimal reconfiguration algorithms for real-
time fault-tolerant processor arrays,”IEEE Transac-
tions on Parallel and Distributed Systems, vol. 6,
pp. 498–510, May 1995.

[13] J. Duato, P. Lopez, and S. Yalamanchili, “Deadlock-
and livelock-free routing protocols for wave switch-
ing,” in Proceedings of the 11th International Parallel
Processing Symposium, pp. 570–577, April 1997.

[14] B. Izadi, “Design of fault-tolerant distributed memory
multiprocessors,”Ph.D. thesis, the Ohio State Univer-
sity, 1995.

[15] A. Tucker, Applied Combinatorics 2nd ed. Wiley,
1984.

[16] C. Y. Lee, “An algorithm for path connection and its
applications,”IRE Transactions on Electronic Com-
puters, vol. ec-10, pp. 346–365, 1961.

[17] B. Izadi and F.Özgüner, “Spare allocation and re-
configuration in a fault tolerant hypercube with direct
connect capability,”Proceedings of the Sixth Confer-
ence on Distributed Memory Computing Conference,
pp. 711–714, April 1991.

