Real-time fault-tolerant hypercube multicomputer

B.A. Izadi and F. Ozgiiner

Abstract: A real-time fault-tolerant design for a d-dimensional hypercube multiprocessor with
two modces of operation is presented and its rcconfigurability is cxamined. The augmented
hypercube, at stage one, has a sparc node connected to cach node of a subcube of dimension /, and
the spare nodes are also connccted as a (— i)-dimensional hypercube. At stage two, the process
is repeated by assigning one spare node to cach (d — i — j)-dimensional sparc subcube of stage
onc. Two modcs of operations arc considered, one under hcavy computation or hard deadline and
the other under light computation or soft deadline. By utilising the capabilitics of wave-switching
communication modules of the spare nodes, faulty nodes and faulty links can be tolerated. Both
theorcetical and experimental results are presented. Compared with other proposed schemes, the
proposed approach can tolerate significantly more faulty components with a low overhead and no

performance degradation.

1 Introduction

In the quest to attain petascale computing, researchers are
designing parallel machines with hundreds of thousands of
processing clements [1]. The hypercube, due to its rich
interconnection properties [2], is an attractive topology to
implement such parallel machines. To keep the hypercube
multicomputer operational and sustain the same level of
performance in the presence of faults, researchers have
proposcd schemes that augment the hypercube with spare
nodes and/or spare links to replace the faulty ones [3—13].
Petascale multicomputers have been cited as having the
capacity to solve a number of complex applications,
including some with real-time implication [1]. Hence, in
a real-time cnvironment faulty components have to be
replaced with sparcs in a manncr that also satisfies the
requircd completion deadline of active tasks. Two modes of
operation arc generally considered: the ‘strict mode’ and
the ‘relaxed mode’. The strict modc pertains to tasks whosce
computational requircments are hcavy or have a hard
completion dcadline. The relaxed mode, on the other
hand, consists of tasks with a soft completion decadline or
a light computational load. Therefore, in the strict mode of
operation, in order to allow for fast rcconfiguration, spare
replacement of faulty components should result in very few
changes in the system interconnections. A common
approach to accommodate this mode of operation is to
replace cach faulty component with the local sparc using a
distributed reconfiguration algorithm [14]. On the other
hand, in the relaxed mode of operation, a global reconfi-
guration algorithm is applicd to maximisc the probability

a5 1EL, 2002

IEE Proceedings online no. 20020720

DOI: 10.1049/ip-cdt:20020720

Paper first received 8th Auguast 2001 and in revised form 19th August 2002
B.A. [zadi is with the Department of Electrical and Computer Engincering,
State University of New York, 75 South Manheim Blvd., New Paltz,
NY 12561, USA

E. Ozgiiner is with the Department of Electrical Engincering, Ohio State
University, 2015 Neil Ave., Columbus, OH 43210-1277, USA

IEE Proc.-Comput. Digit. Tech., Vol 149, No. 3, September 2002

that in the next strict modc of operation there exists a local
sparc for every faulty component.

We present a two-stage redundant scheme for the hyper-
cube. The objectives of the scheme are two fold. First, to
facilitate rcal-time fault tolerance by allowing the system to
operate in cither the strict mode or the relaxed mode.
Second, to utilisc the spare network to tolcratc a large
number of faulty nodes and faulty links.

2 Definitions and notation

Each regular node of a d-dimensional hypercube is denoted
by ‘d-tuple’ (by_1, ..., bi. .., by), where b; € {0, 1}. A sub-
cubc is defined by a unique d-tuple {0, 1, X3¢ where ‘O’
and ‘1’ are the ‘bound’ coordinates, and ‘X’ represents the
free co-ordinates. A (d — k)-dimensional subcube is repre-
sented by a d-tuple with £ bound co-ordinates and (d — k)
free co-ordinates. Each sparc node is uniquely defined by
d-tuple {0, 1, S} where “0° and ‘I’ represent the bound
co-ordinates and S corresponds to the free co-ordinates of
the spare node’s assigned cluster. A regular link is specified
uniquely by d-tuple {0, 1, -} where *-* can be substituted by
‘07 or ‘1" to identify its connecting nodes. An intra-cluster
spare link (a link connecting the sparc node of stagc one to a
regular node of its cluster, or a link connecting the sparc
node of stage two to a spare node of its cluster at stage one)
is defined by a (d+ D-tuple {0, 1, S}*D where S is
inserted to the left of the (i — [)th bit of the regular node
1D, to which the spare node is connected. For example, the
intra-cluster spare link connccting the spare node 00SS and
node 0001 is identified as 00S01. An inter-cluster spare link
(a link connecting two spare nodes at cither stage one or
stage two) is defined by a d-tuple {0, 1, S, -} where “-* can
be substituted by ‘0’ or “1” to identify its connecting spare
nodes. Hence, the inter-cluster sparc link connecting
spare nodes 01SS and 00SS is labelled 0-SS. Finally, we
define the ‘connection requirement’ (Cr) of a spare node in a
cluster with multiple faulty nodes as the number of edge-
disjoint paths that must be constructed within the sparc
cube from that sparc node to other sparc nodcs in the fault-
free clusters so that faulty nodes can be tolerated.

197

3 Overview of the TECH

In our scheme, at stage one, the d-dimensional hypercube is
divided into 2~ subcubes of dimension i: we call each of
these subcubes a cluster. One spare node is assigned to each
cluster; the spare node is connected to every regular node of
its cluster via an intra-cluster spare link. Spare nodes are
also interconnected to form a (d — i)-dimensional spare
cube using inter-cluster spare links. We call the resultant
sttucture the ‘enhanced cluster hypercube’ (£CIT) [3].
Fig. I depicts an ECH of dimension =4 with clusters
of dimension i =2. At stage two, thc process is repeated:
the spare nodes of stage onc arc also divided into 2!/~
clusters of dimension j and one spare node from stage two
is assigned to cach of these clusters. Morcover, the sparc

0110 11
018S 0111 111 TSS
- -4 Vd .
0100 /0101 1100/ X J1101
0010 740011 1010 1011
] L e
0000 00SSVNDoot 1000 oSS\
Oregular node Ospare node ==regularlink ——— spare link

Fig. 1 ECH of dimension 4

0110 1SS 1111
ES Yol L UAYNIISS
- T 7 PX
0100 501 / Jios 1101
ootk /
0010L) ‘e W 10105 1011
Qe M 4 7 A
» i ___,,.... ho
0000 e ¢ G scg 1000 1932 Y1001
O regular node Ospare node stage 1 spare node stage 2

v regular link - gpare link stage 1 ~~ spare link stage 2

Fig. 2 TECII of dimension 4

Dspare Out 1

nodes at stage two are interconnected as a (d — i — j)-
dimensional spare cube. We call the resultant structure the
‘two-stage cnhanced cluster hypercube’ (TECH). Fig. 2
depicts a TECH of dimension d =4 with i=2 and j=1.
Each rcgular node in a TECH is connccted to its o
neighbouring regular nodes and the local spare node at
stage one. Fach spare node at stage one is connected to 2°
regular nodes of its local cluster, its (d — i) neighbouring
sparc nodes at stage onc, and its assigned sparc node at
stage two. Each sparc node at stage two is connected to 2/
sparc nodes of its local cluster of stage one and its
(d — i — j) neighbouring sparc nodes at stage two. There-
fore, the degree of cach regular node, cach sparc nodc at
stage onc, and cach sparc nodc at stage two are (d + 1),
Q'+d--i+1),and 2"/ +d — i —), respectively.

We next describe how the TECH tolerates faulty nodes
and faulty links. Each node is made of a computation
module and a wave-switching communication module
[15]. Waveswitching implements circuit-switching and
wormhole-switching concurrently; permanent connections
and long messages use the circuit-switched segment while
short messages are transmitted using the wormhole-
switching. We assume that faulty nodes retain their ability
to communicatc. This is a common assumption since the
hardware complexity of thc communication module is
much lower than that of the computational module. There-
fore, the probability of failure in the communication
module is much lower than in the computation module.

Sspare node stage 2
spare node stage 1

@ faulty node
"
o healthy node

~—>¢—faulty link

Fig. 3 Reconfiguration of TECH

1

spare Ch 1

sparf In2 spare Out 2
i o 0
10 10
I o P~
—i

—D >
e

Fig. 4 Replacing faulty nodes 1100 and {110 with spare nodes 0188 and 11SS, respectively

198

1EE Proc-Comput. Digit. Tech., Vol. 149, No. 5, September 2002

This assumption may bc avoided by duplicating the
communication module in each node. To tolerate a faulty
node, the computation module of the spare node logically
replaces the computation module of the faulty node. In
addition, if the sparc node resides in the cluster of the
faulty node, the new communication module consists of
the functional communication module of the faulty node
merged with the appropriate routing channel of the local
spare node. If the assigned spare node and the faulty node
belong to different clusters, a dedicated path is constructed
by linking the appropriatc routing channels of the inter-
mediate spare nodes. Once such a path is established, due
to the circuit-switched capability of the wave-switching
communication modules, the physical location of the faulty
node and its assigned spare node becomes irrclevant,
Moreover, no modification of the available computation
or communication algorithm is necessary. Similarly, faulty
links arc bypassed by establishing parallel paths using
spare links. Fig. 3 illustrates the reconfiguration of a
TECH with d=4, i=2, and j=1 in the prescnce of
indicated faulty nodes and faulty links. For the sake of
clarity, in Fig. 3, non-active spare links are dclcted and
active spare links arc drawn in a variety of linc styles to
distinguish the bypass paths. Note that by utilising sparc
nodes from other fault-free clusters, in effect, four logical
spare nodes arc present in cluster 11XX. Fig. 4 illustrates
how sparc nodes 0185 and | LSS replace faulty nodes 1100
and 1110, respectively, by merging their communication
module. The heavy and dashed lines in Fig. 4 pertain to
similar lines in Fig. 3 and represent effcctive permanent
circuit-switched connections after the reconfiguration.

4 Reconfigurability of the TECH

To allow for fast rcconfiguration in the strict mode of
opcration, the reconfiguration algorithm should result in
minimum changes in system interconnections. Hence,
under the strict mode of operation, cach faulty node of a
cluster is replaced by the local sparc nodc at stage one. The
algorithm is applicd distributively, allowing cach sparc
nodc at stage onc to monitor the status of thc rcgular
nodes within its cluster, and replace the faulty node as
outlined in the previous Section. The reconfiguration
algorithm under the strict mode of opcration fails if more
than one node becomes faulty in a cluster.

The reconfiguration algorithm in the relaxed mode of
operation first trics to assign cach detected faulty node to a
spare node at stage two. This is donc to make the spare
nodes at stage onc available for the next strict mode of
operation. For cxample, in Fig. 2, in the relaxed mode of
operation, the task of faulty nodes 0110 and 0000 are
assigned to spare nodes S1SS and SO0SS, while in the strict
mode of operation they would be assigned to the local
sparc nodes 0155 and 00SS, respectively. Under the relaxed
mode of operation, if there is no available unassigned
sparc node at stage two, a spare node from stage one is
assigned to the faulty node; details of the reconfiguration
algorithm under the relaxed mode of operation is discussed
in Section 4.2.

4.1 Theoretical results

From the previous Section it follows that the reconfigur-
ability of the TECH is a function of the number of
dedicated and edge-disjoint paths, within the sparc nctwork
at stages one and two, that can be cstablished between the
local sparc node of a cluster with multiple faulty nodes
and the available spare nodes in the fault-free clusters.

I1E Proc.-Comput. Digit. Tech., Vol. 149. No. S, September 2002

The availability of these edge-disjoint paths is a connec-
tivity issue within the sparc nctwork. The following
thcorems examine the connectivity of the spare network
and establish bounds on the number of faulty nodes that a
TECH can tolerate.

Lemma 1: A d-dimensional TECH with clusters of dimen-
sion i, at stage one, can at most tolerate (¢ — /4 2) faulty
nodes in one cluster.

Proof: Given a cluster, at stage one, with multiple faulty
nodes, the local spare node can replace one of them. Since
the local spare node, at stage one, has a degrce of
(d — i+ 1) within the spare network, at most (¢ — i+ 1)
cdge-disjoint paths may be constructed from it to unas-
signed spare nodes. O

Theorem 1: A d-dimensional TECH with clusters of
dimension /, at stage one, can tolerate (¢ — i+ 2) faulty
nodes regardless of the fault distribution.

Proof: We first show, by induction, that a TECH at stage
one can tolerate (¢ — i+ 1) faulty nodes regardless of the
fault distribution. The TECH at stage one is simply an
ECH of dimension ¢ with clusters of dimension /. The basc
case is shown for =. There cxists onc spare node which
is connccted to cach of the 29 regular nodes. Upon failure
of any one regular node, the sparc node can replace it
directly. Therefore, the ECH can tolerate ¢ —i+1=1
faulty node.

Next, et us consider an ECIH of dimension d=i+
(k — 1) cach cluster has a dimension i=d — (k — 1) and
the dimension of the spare cube is ¢ — i=(k —). Let us
assume that the (i +k — 1)-dimensional ECH can toleratc
(d—iD+1=0(k—1)+ 1=k faulty nodes. Keeping thc
cluster sizc constant, consider an ECH of dimension
d=i+k The dimension of the spare cube is then
d — i=k. Let us split the (i + k)-dimensional ECH along
a dimension / such that />i. Conscquently, thc regular
nodes of the two (i+ k& — 1)-dimensional subcubes are
connected along the dimension /; they form a match
along the dimension /. Likewise, the sparc nodes of the
two (k — l)-dimensional sparc cubes arc connected along
the dimension (/ — i) of the spare cube. By the induction
hypothesis, cach (i + k& — 1)-dimensional ECH can tolerate
k faulty nodes. Suppose there exist (k+ |) faulty nodes. If
the distribution of faulty nodes is such that at least one of
them is in onc (i + & — l)-dimensional ECH while the rest
reside in the other half, the system can tolerate the faulty
nodes by the induction hypothesis. Consider the case
where all faulty nodes reside in the same (i+4k — 1)-
dimensional ECH. & faulty nodes ‘can be tolerated in the
same subcubce. Since cvery faulty node has an unused spare
link to its local spare node and the local spare node has an
unused spare link in the dimension (/ — i) to an unassigned
spare node within the fault-free half of the ECH, a dedi-
cated path within the spare cubc between the (k4 [)th
faulty node and the unassigned spare node can be estab-
lished. The system can thercfore tolerate (k+ 1) faulty
nodes, and it follows by induction that (¢ — i+ 1) faulty
nodes can be tolerated within the spare cube at stage onc.

Finally, consider the TECH at stages one and two. Since
the (d — i+ 2)th faulty node has an available edge connect-
ing it to the local sparc node, at stage one, and the local
spare node has an unused spare link connecting it to a
spare node at stage 2, a dedicated path between the
(d — i+ 2)th faully node and the spare nodc at stage 2
can bc cstablished. The system can therefore tolerate
(d — 14 2) faulty nodes regardless of the distribution of
faulty nodes. ' [l

199

We next sct the bounds on the number of faulty nodes
per cluster, under the maximum number of faulty nodes
(2€=0 42Uy that the TECH can tolerate. Our proof
uscs the following theorem from [3].

Theorem 2: A d-dimensional ECH with clusters of dimen-
sion i can tolerate 2“7 faulty nodes with up to three faulty
nodes per cluster regardless of the fault distribution. [

Theorem 3: A d-dimensional TECH with clusters of
dimension i, at the first stage, and clusters of dimension
Jj, at the second stage, can tolerate 2~ + 24~ faulty
nodes, rcgardless of the fault distribution, provided that the
maximum number of faulty nodes in each subcube of
dimensions / and i+ is 4 and 3(2/ + 1), respectively.

Proof: Consider the regular hypercube and the spares of
the TECH at stage one only. The topology is that of an
ECH of dimension ¢ with clusters of dimension /; let us
refer to it as the ECH-1. Likewise, the ECH-2 of dimension
d with clusters of dimension i+, can be formed by
utilising the regular hypercube and the spares of the
TECH at stage two. Under the structure of the ECH-2,
spare nodes of the TECH at stage one simply function as
intermediate hops, and we can ignore the inter-cluster sparc
links of stage one. By thcorcm 2, the ECH-2 can tolcrate
277D faulty nodes with up to three faulty nodes per
subcube (cluster) of dimension i +/. Likewise, the ECH-1
can tolerate 2¢“? faulty nodes with up to threc faulty
nodes per subcube of dimension i. Hence, the total number
of faulty nodes that the TECH can tolcrate is
2({/7[7_/)_’_2(1/71').

Next, consider a subcube of dimension i + /. Within this
subcube, there exists 2/ subcubes of dimension i. Hencc, the
maximum number of tolerated faulty nodes within a
subcube of dimension i+j is 3 x 2/ (due to the ECH-1)
plus 3 (due to the ECH-2) for a total of 3(2/ 4 1). Within this
constraint, each subcube of dimension / can toleratc three
and one faulty nodes due to the ECH-1 and thc ECH-2,
respectively, for a maximum total of four. 0l

From thcorem 3 it follows that the reconfiguration of the
TECH, under the maximum numbcr of faulty nodes, is
guarantecd provided that the number of edge-disjoint paths
that must be initiated from cach spare nodc at stage one
and stage two be limited to three and two, respectively; the
maximum Cy of each spare node at stage onc be three and
at stage two be two. The result of theorem 3 could be
extended to a hypercube with multi-stage redundancics.

Theorem 4: A d-dimensional enhanced cluster h()/})el'gtlb¢
with k-stage redundancies can tolerate Zf":. 20=20 o
faulty nodes provided that the maximum Cp of every sparc
node at stage k is two and every other stage is three,
respectively. 1

4.2 Simulation results

From our theoretical results, it follows that, in the relaxed
mode of opceration, some patterns of five faulty nodes per
cluster can cause the reconfiguration of the TECH to fail.
However, the probability that the faulty nodes can form
such patterns is very low. Therefore, a more realistic
measure of the reconfigurability of the TECH would be
under random fault distributions. We next examine the
simulation results based on the following reconfiguration
algorithm. An optimal reconfiguration algorithm can be
developed by utilising the maxflow algorithm [16]. The
main drawback to a rcconfiguration using the abovc
algorithm is that a digraph representation of the sparc

200

network has to be constructed [17] and the spare nodc
assignment has to be done by the host processor. To
overcome these deficiencies, we next present a ncar-
optimal reconfiguration algorithm. The algorithm consists
of four patts as specified below:

(i) Early abort: The following solvability checks are
performed to determine whether the reconfiguration is
feasible. If the total number of faulty nodes is greater
than the number of spare nodes (2977 42~y the
reconfiguration fails. If the Cp of a spare node at stage
one is greater than (¢ — i+ 1), the reconfiguration fails due
to lemma [.

(1i) Assignment at stage two. We utilise Lee’s path-finding
algorithm [18] to find a set of candidatc spare nodes at
stage two that can be assigned to the faulty nodc. The
algorithm begins by constructing a breadth-first scarch of
minimum depth £ (1 <k < p=i=p 1) in the sparc cube
of stage two from the local sparc node of a faulty cluster. If
a frec sparc node is found, a path is formed to the faulty
node. The algorithm guarantees that a path to a spare node
will be found if one exists and the path will be the shortest
possible [18]. Once a path is formed, the links associated
with that path are deleted from the spare tree, resulting in a
new structure. If there still remain some uncovered faulty
nodes, a solvability test similar to step | is performed on
the new structure and this step is repeated for a higher
depth £ in stage two of the spare cube.

(iil) Local assignment: 1f all sparc nodes at stage two are
assigned and there still remain some faulty nodes, the local
spare nodc of every faulty cluster is assigned to a faulty
node within the cluster.

(iv) Assignment at stage one. If there remain additional
faulty nodes, we apply Lece’s path-finding algorithm to both
stages one and two from the local spare node of a faulty
cluster with an unassigned faulty node. Reconfiguration
fails if &> 2" 429D which is the longest acyclic
path in the spare network.

To illustrate our reconfiguration algorithm, let us
consider Fig. 5. The algorithm avoids the ecarly abort of
step one, since the total number of faulty nodes is not
greater than the number of spare nodes and the Cy of no
spare node is greater than (¢ — i+ 1)=3. During the
second step, the algorithm randomly sclects the faulty
node 0110. A breadth-first-search of depth onec, at stage
two, from the local sparc node 018S yiclds the available
sparc node S7SS. Hence, the spare node §78S is assigned to
the faulty node 0110. Similarly, the faulty node 1110 is
assigned to the spare node SOSS using a breadth-first-search
of depth two from the local spare node 11S55. Since no other
unassigned spare nodc is availablc at stage two, the algo-
rithm moves on to step three, where randomly faulty nodes
1011 and 1110 are assigned to their local spare nodes 10SS

£ spare node stage 2
(. }spare node stage 1 O healthy node

. faulty node

Fig. 5 Reconfiguration of TECH

{LE Proc.-Comput. Digit. Tech., Vol. 149. No. 5, September 2002

100 1Y
* G4: enhanced cluster hypercube

80 + G3: Alam & Melhem's sys 2
o G3 x G2: Alam & Melhem'’s chan. mux.
% o G1: cluster hypercube
2 60| 1@
c
Q
(o]
e
5 101 a1
e
@
Q.

207

o ML NN "N W S
200 400 600 800 1000

number of faulty nodes

Fig. 6 Reconfigurability of ECH under random fault distribution

dimension of hypercube = 20
dimension of cach cluster = 10
dimension of sparc nodes = 1024

and 1188, respectively. Finally, during step four, faulty
nodes 1100 and L1101 are assigned to sparc nodes 01SS
and 00SS using a breadth-first-search of depth one and two,
respectively, from the local spare node 11SS.

We implemented the reconfiguration algorithm for a
TECH with ¢ =20, i=10, and j=3. 1000 simulation
runs were performed for each given number of faulty
nodes. The result of our simulations, under random fault
distribution, indicate 100% reconfiguration in the presence
of up to 1152 faulty nodes (the maximum). To compare the
fault tolerant capability of the TECH with other schemes,
we first simulated the reconfigurability of an ECH (a TECH
with spare nodes only at stage one) of ¢ =20 and i=10;
this is done since most fault-tolerant hypercube schemes in
the literature have only one level of redundancy. The
simulation result of the ECH for up to 1024 randomly
placed faulty nodcs is shown in Fig. 6 as plot G4. Plots G1,
G2, and G3 in the figure pertain to the schemes proposed
by [5, 19], [9], and [8], respectivcly; compared to other
schemes in the literature, the selected ones toleratc more
faulty nodes for similar hardware overhead. The result
indicates 100% reconfiguration of the ECH in the presence
of up to maximum number of faulty nodes.

100
90
80
70
60 4
50
40 4

percent reconfigured

30
20 A
10 A

0 T T T
2 4 6

number of faulty nodes per faulty cluster

Fig. 7 Reconfigurability of TECH versus ECH under random
Sault distribution

dimension of hypercube =20

dimension of sparc cube at stage 1 =10

dimension of spare cube at stage 2=7

Nf=total number of faulty nodes

ILE Proc.-Comput. Digit. Tech., Vol. 149. No. 5, September 2002

100
90 -|
80 -
8 70
3
2 60
c
(o]
8 501
5 40
©
& 30
20 4
10
0 T T T T T

1 2 3 4 5 6

number of faulty nodes per faulty cluster

Fig. 8 Reconfigurability of TECII versus ECI under random

Jauldt distribution

dimension of hypercube =20
DS = dimension of sparc cubc
Nf=total number of faulty nodes

We next compared the reconfigurability of the
TECH and the ECH with 2“7 and 2942~
faulty nodes, respectively, such that each cluster contains
a fixed number of faulty nodes. Fig. 7 depicts the simula-
tion results for the hypercube of dimension ten; the solid
and the dashed lines in the Figure pertain to the result of
the TECH under 1152 faulty nodes and the ECH under
1024 faulty nodes, respectively. The result indicates that,
under the maximum number of faulty nodes, the TECH can
handle one more faulty node per cluster than the ECH. The
result is intriguing since the degrec of the spare node of the
TECH at stage onc is also higher than the ECH by onc.
Similar results were attained under different dimension
sizes of the sparc cubes at stage one and stage two. Fig.
8 depicts the simulation results of an ECH and two TECHS,
where the dimensions of the spare cube of the ECH and the
sparc cube of the TECH at stage one are eight. Moreover,
the dimensions of the sccond-stage spare cube of the two
TECHs are five and four. The results illustrate that the
existence of a second stage of redundancy is more critical
to the higher reconfigurability of the TECH than the sizc of
the sparc cube at the second stage. Hence, multi-stage
redundancy should only marginally enhance the reconfi-
gurability of the hypercube over the TECH, since the
degree of the sparc nodc at stage one is (d —i+1)
regardless of the number of spare stages or their dimen-
sions.

As indicated in the previous Section, the TECH can also
tolerate faulty links. However, some faulty links can only
have one bypass path. Therefore, no distinction between
their relaxed and strict mode of operations can be made.
Also, two or more faulty links sharing a node in a TECH
will causc the reconfiguration to fail. Hence, no theoretical
lower bound on the number of tolerated faulty links can be
established. Our simulation results of the TECH, based on
random distribution of faulty links, is slightly better than
the simulation results of the ECH [3].

b Conclusion

We have proposed a scheme to allow a hypercube multi-
processor to tolerate faulty nodes in real time. During the
strict mode of operation, the scheme uses local reconfi-
guration, which is the fastest and involves the fewest

201

switch changes. Then, in the next relaxed mode of opera-
tion the tasks of local sparc nodes, at stage onc, are
transferred to the spare nodes at the second stage by
applying a global reconfiguration scheme. If a nodc
becomes faulty during the relaxed mode of opcration, the
scheme tries to assign a spare nodc at stage two to replace
it. This is done to maximise the probability that in the next
strict mode of operation local spare nodes may be available
to replace potential faulty nodes. Our theorctical results
indicate that, in the rclaxed mode of operation, our schemc
can always tolerate the maximum number of faulty nodes
with up to four faulty nodes per cluster at stage one. Our
cxperimental results suggest that, under random fault
distribution, the maximum number of faulty nodes can be
tolerated with a very high probability.

6 References

DONGARRA, I, and WALKER, D.: ‘The quest for petascalc com-
puting’, IEEE Comput. Sci. Eng., 2001, pp. 32 39

SAAD, Y., and SCHULTZ, M.I.: ‘“Topological propertics of hyper-
cubes’, IEEE Trans. Comput., 1988, 37, pp. 867-872

3 IZADI, B., OZGUNER, B, and ACAN, A.: ‘Highly fault-tolerant
hypercube multicomputer’, IEE Proc., Comput. Digit. Tech., 1999,
146, pp. 77- 82

BANERIJEE, P, and PEERCY, M.: ‘Design and evaluation of hardware
strategics for recon-figuring hypercubes and meshes under faults’, /E££E
Trans. Comput., 1994, 43, pp. 841-848

CHAU, S.C., and LIESTMAN, A.L.: ‘A proposal for a fault-tolerant
binary hypercubes architecture’, Proceedings of the [ECE [nternational
symposium on fault tolerant computing, 1989, pp. 323-330
BANECRIEL, P: ‘Strategics for reconfiguring hypercubes under faults’.
Proceedings of the IEEE International symposium on fault tolerant
computing, 1990, pp. 210217

L]

N

[

[=}

202

~3

x

=3

1

16
17

o

R=3

BANERJEL, P, RAHMEH,)., STUNKEL, C., NAIR, V., ROY, K.,
BALASUBRAMANIAN, V., and ABRAHAM, I: ‘Algorithm-based
{ault tolerance on a hypercube multiprocessor’, ILLE Trans. Comput.,
1990, 39, pp. 1132-1145

ALAM, M., and MELHEM, R.: ‘An efficient modular spare allocation
scheme and its application to fault tolerant binary hypercubes’, IEEE
Trans. Parallel Distrib, Syst., 1991, 2, pp. 117--126

ALAM, M., and MELIIEM, R.: ‘Channel multiplexing in modular fault
tolerant multiprocessors’. Proceedings of the IEEE International confer-
ence on Parallel processing, 1991, pp. 1492-1496

HAYES,)P ‘A graph model for fault-tolerant computing systems’,
IEEE Trans. Comput., 1976, 25, pp. 875-884

BRUCK, J., CYPHER, R., and 11O, C.T.; ‘Efficicnt fault-tolerant mesh
and hypercube architectures’. Proceedings of the 22nd Annual interna-
tional symposium on Fault tolerant computing, 1992, pp. 162-169
BRUCK, I, CYPHER, R., and HO, C.T.: ‘Wildcard dimensions, coding
theory and fault-tolerant meshes and hypercubes’. Proceedings of the
23rd Annual international symposium on Fault tolerant computing,
1993, pp. 260 267

DUTT, S., and HAYLS, I.P: ‘Designing fault-tolerant systems using
automorphisms’, S Parallel Distrib. Comput., 1991, 12, pp. 249-268
LIBESKIND-HADAS, R., SHRIVASTAVA, N., MELIIEM, R., and
LIU, C.: ‘Optimal reconfiguration algorithms for real-time fault-tolerant
processor arrays’, [EEE Trans. Parallel Distrib. Syst., 1995, 6,
pp. 498 510

DUATO, J., LOPEZ, P, and YALAMANCHILI, S.: ‘Dcadlock- and
livelock-free routing protocols for wave switching’. Proceedings of the
I'1th International parallel processing symposium, April 1997,
pp. 570-577

TUCKER, A.: ‘Applied combinatorics’, (Wiley, 1984, 2nd cdn.)
1ZADI, B.: ‘Design of fault-tolerant distributed memory multiproces-
sors”. PhD thesis, The Ohio State University, 1995

LEL, C.Y.: ‘An algorithm for path connection and its applications’, IRE
Trans. Electron. Comput., 1961, ec-10, pp. 346-365

1ZADI, B., and OZGUNER, F.: “Spare allocation and reconfiguration in
a fault tolerant hypercube with dircet connect capability’. Proceedings of
the sixth Conforence on Distributed memory computing, 1991,
pp. 711-714

IEE Proc.-Comput. Digit. Tech., Vol. 149, No. 5. September 2002

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

