
Fault-Tolerance in Augmented Hypercube Multicomputers

Baback A. Izadi�

Department of Electrical Engineering

The Ohio State University

Columbus, OH 43210, USA

Abstract

This paper describes different schemes for tolerating faults in augmented hypercube multipro-

cessors. The architectures considered have a spare assigned to each subset of nodes (cluster).

The approaches make use of hardware redundancy in the form of spare nodes and/or links and

usually requires modifications in the communication as well as computation algorithms.
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1 Introduction

The area of reconfigurability in the presence of faults is becoming increasingly important with

the emergence of massively parallel architectures. Therefore, fault tolerance is an important

issue that needs to be addressed in the design of node architectures, communication hardware

and software design as well as parallel algorithm development. A d–dimensional hypercube

multicomputer consists of n = 2
d processors (nodes) interconnected as a Boolean d-cube, with

each processor having only local memory. Inter–processor communication is done by explicit

message passing.

Each processor in a d–cube can be represented by a d–tuple (bd�1 � � � bi � � � b0) where bi 2

f0; 1g, and a subcube in a d-cube can be represented by a d–tuple f0; 1;Xgd: Coordinate values

“0” and “1” can be referred to as bound coordinates and “X” as free. A (d � k)–dimensional

subcube ((d � k)–subcube) in a d–cube is represented by a d–tuple with k bound coordinates

and (d� k) free coordinates.
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Two general approaches can be identified for fault tolerance in hypercube multiprocessors.

The first approach looks into ways of utilizing the healthy processors and links of a hypercube

with faulty nodes/links, to identify embedded topologies such as lower dimensional hypercubes

(subcubes), meshes, etc. required by the computations. With this approach, some performance

degradation is expected, however special hardware design for fault-tolerance is not necessary. A

distributed fault diagnosis algorithm for identifying the set of faulty processors and links, when

the number of faulty processors and links r � d is given in [1]. Once the faulty elements are

identified, the multiprocessor and the distributed algorithm running on the multiprocessor[2]

must be reconfigured to run on the available processors. A faulty hypercube needs to be re-

configured to perform both local and global communication as required by the algorithm, effec-

tively and with minimal performance degradation. A study of hypercube algorithms reveals that

in many cases, the computations that require local communication are mapped onto topologies

such as meshes or rings (grid problems for example [3]) and the hypercube topology is used for

global data communication. Therefore, both local and global communication schemes must be

considered in designing algorithms for faulty hypercubes.

The second approach to fault-tolerance makes use of hardware redundancy in the form of

spare nodes and/or links and usually requires modifications in the communication hardware.

Although a d-dimensional hypercube with faulty nodes still contains a number of lower dimen-

sional subcubes and therefore can be used to run hypercube algorithms without any modification

[4, 5, 6, 7], one faulty node reduces the dimension of the largest fault-free subcube to (d � 1)

and 2 faulty nodes can reduce it to (d� 2). This has motivated researchers to investigate hard-

ware redundancy and spare allocation schemes. In this paper, a survey of these schemes are

presented.

2 Tolerating Node Failure

As mentioned in Section 1, faulty nodes can substantially reduce the dimension of the largest

fault-free available subcube. To preserve the dimensionality of the faulty hypercube, hardware

redundancy and spare allocation schemes [8, 9, 10, 7, 11, 12, 13, 14, 15] have been investigated.

A hardware scheme was first proposed by Rennels [8]. Here, N = 2
d processors are

grouped into S = 2
s clusters of M = 2

m processors each, where d = m + s and one spare

is assigned per cluster. Crossbar switches are employed to add spare nodes via the additional

port in dimension (d + 1) (Fig. 1). If a processor fails in a cluster, the spare replacing it must

be able to communicate in d dimensions. Therefore, it has to be linked to the m neighboring

processors in that cluster as well as one processor in each of the s external subcubes to which

the failed processor is connected. This is accomplished using two crossbars, namely the CCB

(Connection Crossbar) and the RCB (Relay Crossbar). The CCB allows a spare to be connected

to each of the 2m processors in its designated cluster via their spare port. Using the RCB, the
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Figure 1: Rennels’ scheme for assigning a spare to a cluster
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Figure 2: Augmented four-dimensional hypercube topology proposed by Banerjee

spare is linked to each of the other s clusters to which the host cluster is connected. This

approach can tolerate only a single faulty node per cluster with a significant overhead. It does

not tolerate any link failures. For better fault coverage, spare boards consisting of one spare

processor and S crossbars are suggested. Each spare node then can replace any faulty node

directly. However, the degree of the spare node would effectively be equal to the size of the

hypercube. Furthermore, additional crossbars to interconnect the spares are needed.

Several approaches are proposed by Banerjee et. al. [10, 7, 12] to perform reconfiguration

using spare nodes and spare links. In [12] two spares per 3-cube are assigned (Fig. 2) and the

spare processors form a (d�2)-cube. Upon a node failure, the faulty processor is replaced with

the local spare. The link connecting the spare to the faulty processor and the link connecting

it to the processor diagonally opposite to the faulty processor are disabled. All other links are

enabled. The spare node (S) which replaces the faulty one sends its address and the address

of the faulty node to all the spare nodes connected to S. The function of each of the other

spares is now that of a simple switch. Consequently each spare determines the node to which

it needs to be connected by using the bitwise XOR of its own address, the address of the spare

S, and the address of the faulty node. As an example, let us consider Fig. 2 when node 01100

is faulty. The reconfiguration steps are as follows. Replace processor 01100 with the spare



processor 11100. The links between the spare 11100 and nodes 01100 and 01111 are disabled.

All other links are enabled. The spare node 11100 sends its address as well as the address

of the faulty node (01100) to the its neighboring spare nodes (11000 and 10100). The spare

nodes 11000 and 10100 calculate the address of the nodes they should be connected to as:

01100�11100�11000 = 01000 and 01100�11100�10100 = 00100. The spare nodes 11000

and 10100 then act as switches. This system can only tolerate a single node failure.

In [10] Banerjee proposes two schemes to tolerate faulty processors. The first scheme uses

two sets of nodes; P-nodes and S-nodes. P-nodes are the regular nodes of the hypercube. An

S-node consists of a spare attached to a P-node. S-nodes are allocated such that every regular

node is at a Hamming distance of one from a spare node. For example in a 3-cube, spares can

be attached to nodes 0 and 7. When a node fails, the spare node at a distance of one from the

faulty node is brought on line. The S-node’s communication module is used to handle both the

communication needs of the faulty node and that of the attached regular node. Messages that

would have been routed to the faulty node, need to be routed to the spare using a routing table

[7]. Therefore, some physical links may experience added traffic which is defined as congestion.

If more than one node fails and the failed nodes are at a Hamming distance of one from an S-

node, a weighted bipartite graph is set up to match the faulty nodes with the spares with the

minimum link dilation. The link dilation in a faulty hypercube is defined by d(v; �(v)) where

v represents the faulty node, �(v) identifies the spare replacing v, and d denotes the distance

between them. Both dilation and congestion are high with this scheme.

In the second method, spare nodes are placed between links connecting pairs of nodes.

For example in a 3-cube, one spare can be placed between nodes 0 and 1, and another spare

between nodes 6 and 7. Similar to the previous scheme, a weighted bipartite graph is used to

assign spares to the faulty nodes. Again the scheme results in high dilation and congestion.

Alam and Melhem [16, 13, 14] using hardware redundancy, developed augmented ap-

proaches to tolerate faulty nodes. In [16, 13], they have proposed two schemes. In the first

one, a single spare is added to each cluster of 4 nodes. If one of the four nodes fails, the spare

replaces it and inherits its address. The e-cube [17, 18] routing algorithm is no longer valid.

The new routing algorithm takes up to (2d + 2) steps as compared to the d steps of the e-cube

algorithm, to send a message from a source to a destination. The system can tolerate one faulty

node per cluster. To allow more faulty nodes per cluster, in the second scheme 50% redundancy

is used as shown for d = 3 in Fig. 3. Note that each node can be replaced by one of two spares,

making the spare assignment nondeterministic. Therefore, an even more complicated routing

algorithm is needed. The system can handle two faulty nodes per cluster.

In [14] two spares are assigned per cluster of 4 nodes. Each spare is connected to every

node in its cluster using multiple links (channels). The spares are also connected to form a cube

of their own. Upon a node failure, the faulty node is assigned to one of the spares within the

cluster. The links of the faulty node are then discarded and the mirror image of the spare in the

other clusters are used to connect the spare to the neighboring nodes of the faulty node. Since



Figure 3: A 3-dimensional reconfigurable hypercube proposed by Alam and Melhem
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Figure 4: Hypercube of dimension 4 with clusters of dimension 2

more than one neighbor of a node could be faulty, multiple channels are necessary to connect

the node to the spares of the faulty nodes. Three faults within a cluster is fatal.

Chau and Liestman [9] have employed a decoupling network to connect modules of active

and spare processors. Each module consists of 4 active processor and K spares connected in a

cycle. Soft switches are used to bypass a total of K faulty and spare nodes. The nodes between

modules are connected using k-level decoupling network. They also show that soft switches

can be replaced by decoupling network as well. The system can tolerate up to K faulty nodes.

In [15] two augmented schemes are proposed to tolerate faulty nodes. The presented

schemes tolerate a large number of faults without any performance degradation and the resul-

tant configuration does not affect either the communication or computational algorithms already

developed for the hypercube multiprocessor. In the first scheme (Cluster Approach), a single

spare is assigned per cluster of nodes. An i dimensional cluster is merely a subcube of dimen-

sion i. Thus, a hypercube of dimension d can be divided into 2
j clusters where d = i + j.

Fig. 4 depicts a hypercube of dimension 4 with clusters of dimension 2. The allocation of

spares is facilitated by using a routing element on each node similar in concept to the Direct

Connect Module (DCM) [17] of Intel hypercubes. It is assumed that the faulty nodes retain

their communication capability. This is a fair assumption since in hypercube multiprocessors



such as the iPSC/860, the computation and the communication modules of a node are sepa-

rate. Furthermore, since the complexity of the computation unit is much greater than that of the

communication one, the probability of a failure in the computation unit is much higher.

In hypercubes with Direct Connect Capability [17, 18], the cost of communication is nearly

constant between any two given nodes. To facilitate reconfiguration, the routing elements de-

scribed below are used at each node. Fig. 5 depicts the block diagram of the router for the

regular and the spare nodes. The regular node router is an enhanced version of Intel’s Direct

Connect Module (DCM) with an additional channel routing element provided to connect a given

node to its respective spare. The spare node router is a simple switch which is used to either link

two of the regular nodes within a cluster together or to connect the spare to one of its cluster

nodes. The former is used to bypass the faulty link by connecting the two appropriate channel

routing elements together. The latter, connecting the spare to one of its cluster nodes, is done

to tolerate a node failure. This is accomplished by connecting the Spare Routing Element of

the faulty node (Fig. 5(a)) to the appropriate Node Routing Unit of the spare node. Three cases

exist which may involve routing data through the faulty node. The first one is when the message

originates from the faulty node. Here the spare sends its data via the serializer (Fig. 5) out to

the appropriate Node XX Out channel. The message is then routed to the DCM of the faulty

node via the Spare In. Depending on the final destination node, any of Channel Outs may be

selected. The second case is when the destination of the message is the faulty node. Once the

data reaches the DCM of the faulty node, it is automatically routed to the channel Spare Out

instead of channel To Node. The spare’s DCM would consequently receive the message using

the appropriate channel (Node XX In). It then deserializes the message and sends it to the spare.

The third case is when the faulty node is neither the source nor the destination of the message

but is used merely as an intermediate hop. In this case, the spare is not involved at all, and

routing is done normally. Note that the connection of the spare router to the active node(s) is

established after the reconfiguration and remains intact thereafter.

Upon detecting a node failure, the spare within the respective cluster logically replaces

the faulty node. For example, in Fig. 4, the spare 01SS may logically replace any one of nodes

0100; 0110; 0111; 0101. The spare consequently activates its link to the faulty node and disables

the rest of its links. The spare’s communication module then forwards/receives its data to/from

other nodes via the DCM of the faulty node as discussed above.

To allow multiple faults within a cluster, in the second scheme (Enhanced Cluster Ap-

proach), the spares are connected to form a (d � 2)-cube. Fig. 6 depicts an Enhanced Cluster

Hypercube (ECH) of dimension 4. Each regular and spare node is connected to d + 1 and

4 + (d � 2) = d + 2 nodes respectively. The block diagram of the router for the regular node

is the same as before (Fig. 5(a)). The router for the spare node needs d + 2 routing elements

instead of 4 elements as shown in Fig. 5(b). The spares are provided with the simultaneous

multi-channel communication capability. More specifically, each spare at the same time can

connect bd
2
c pairs of its links together.
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The approach can tolerate a larger number of faulty nodes [?], by establishing dedicated

paths, in the spare hypercube, between the spare of the faulty cluster and spares of the non-

faulty clusters.

3 Tolerating Link Failure

To tolerate a single link failure Banerjee et. al. [12] have proposed a scheme where the diagonal

nodes (nodes with complementing address bits i.e. 010 and 101) are connected with a spare

link. Upon detecting a link failure in dimension i, all links in that dimension are discarded and

every processor with the i–th bit equal to 1 assumes a new address by complementing its current

address bits except for the i–th bit. As an example, if in a 3–dimensional hypercube the link –11

(the link between the nodes 011 and 111) becomes faulty, all links in dimension 2 are discarded

and are replaced by the diagonal spare links. The node address transformation is as follow;

000 ! 000; 001 ! 001; 010 ! 010; 011 ! 011; 100 ! 111; 101 ! 110; 110 ! 101; 111 !

100.

In [15], two approaches are proposed to tolerate link failures. In the first scheme, one intra-

cluster link failure per cluster can be tolerated. Upon detection of a link failure, the router of

the spare node is used to establish a parallel path to the faulty link. The Processing Elements

at the two ends of the faulty link would logically replace their channel routing elements, which

connects them to the faulty link (Fig. 5), with the spare channel routing element. For example

in Fig. 5, connecting the routing elements of nodes 00 and 01 (linking Node 00 In to Node 01

out and Node 01 In to Node 00 out) can provide an alternative path to 010– in subcube 01XX of

Fig. 4. The Spare In , Spare Out of each router of the nodes 0100 and 0101 are then connected to

the Node 00 Out, Node 00 In and Node 01 Out, Node 01 In of the spare router. An Inter-cluster

link failure is fatal. Fig. 7 illustrates the reconfiguration of hypercube upon detection of faults

in nodes 0111, 1000 and links 111–, 000–. The Ch0 routing element of nodes 0000; 0001; 1110;

and 1111 are replaced with the spare channel routing element. The faulty nodes are replaced
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Figure 8: Reconfiguration of a faulty enhanced cluster hypercube

by their designated spare as discussed before. If there exists a need to establish a link between

node 1111 and 1000, the path (1111 ! 11SS ! 1110 ! 1100 ! 1000 ! 10SS) is set up.

Note that no modification of the communication algorithm is needed.

The second approach can also tolerate both intra-cluster and inter-cluster link failures by

establishing parallel path(s) to the faulty link(s). Fig. 8 demonstrates the reconfiguration of a hy-

percube upon detection of faults in links 0–00, 100– and nodes 1011, 1100, 1110. Multi-channel

communication capability of the spare node 10SS is used to logically replace the node 1011

and at the same time establish a path between the nodes 1001 and 1000. As shown in Fig. 8 the

faulty inter-cluster link 0–00 is replaced by the path connecting the nodes 0100; 01SS; 00SS;

and 0000. Similarly, spare nodes 01SS and 11SS logically replace faulty nodes 1100 and 1110,

shown by the dark and dashed lines respectively.

4 Conclusions

A faulty hypercube needs to be reconfigured to perform the computational task and communi-

cation as required by the algorithm with minimal or no performance degradation. The goal is

to avoid the faulty nodes/links and perform useful computation with the fault-free nodes. This



paper outlines research which uses hardware redundancy in the form of spare nodes and links

that logically replace the faulty node(s)/link(s). A survey of various schemes is presented.
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