
The Journal of Supercomputing, 27, 5–17, 2004

# 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Augmented k-ary Tree Multiprocessor with
Real-Time Fault-Tolerant Capability

BABACK A. IZADI bai@engr.newpaltz.edu

Department of Electrical and Computer Engineering, State University of New York,

75 South Manheim Blvd., New Paltz, NY 12561

FÜSUN ÖZGÜNER ozguner@ee.eng.ohio-state.edu

Department of Electrical Engineering, Ohio State University, 2015 Neil Ave., Columbus, OH 43210-1277

Abstract. We present a real-time fault-tolerant design for an l-level k-ary tree multiprocessor and

examine its reconfigurability. The k-ary tree is augmented by spare nodes and spare links. By utilizing the

capabilities of wave-switching communication modules of the spare nodes, faulty nodes and faulty links

can be tolerated. We consider two modes of operations. In the strict mode, the multiprocessor is under

heavy computation or hard deadline and therefore we use a fast and local reconfiguration scheme to

tolerate the faulty nodes. In the relaxed mode, where light computation or soft deadline is encountered, a

global reconfiguration scheme is used to maximize the utilization of spare nodes, both in this mode as well

as in the next strict mode. Both theoretical and simulation results are examined. Our simulation results, in

the relaxed mode of operation, reveal that our approach can tolerate significantly more faulty nodes than

other approaches, with a low overhead and no performance degradation.

Keywords: real time, fault tolerance, k-ary tree, augmented multiprocessor, reconfiguration, wave

switching

1. Introduction

Today, researchers are using hundreds of thousands of processors to design
multicomputers with petascale computing power [1]. Petascale multicomputers have
been cited as having the capacity to solve a number of complex applications,
including some with real-time implication. Some of these parallel computations are
tree structured. Therefore, static and dynamic tree embedding into parallel machines
based on popular topologies, such as the hypercube and the mesh, have been
extensively investigated [2–4]. Alternatively, the tree has been suggested as a simple
and effective topology to build such multicomputers [5–7]. A disadvantage of this
topology is that a single faulty node or faulty link can disable the operation of the
entire tree. Hence, fault-tolerant trees have been examined by a number of
researchers where spare nodes and spare links are used to replace the faulty ones [8–
13]. In a real-time environment, faulty components have to be replaced with spares in
a manner that also satisfies the required completion deadline of active tasks. Two
modes of operation is generally considered: the strict mode and the relaxed mode.
The strict mode pertains to tasks whose computational requirements are heavy or
have a hard completion deadline. The relaxed mode, on the other hand, consists of
tasks with a soft completion deadline or a light computational load. Therefore, in the



strict mode of operation, in order to allow for fast reconfiguration, spare
replacement of faulty components should result in very few changes in the system
interconnections. A common approach to accommodate this mode of operation is to
replace each faulty component with the local spare using a distributed reconfigura-
tion algorithm [14]. On the other hand, in the relaxed mode of operation, a global
reconfiguration algorithm is applied to maximize the probability that in the next
strict mode of operation, there exists a local spare for every faulty component.
In this paper, we present a two-stage redundant scheme for the k-ary tree. The

objectives of the scheme are two fold. First, facilitate real-time fault tolerance by
allowing the system to operate in either the strict mode or the relaxed mode. Second,
utilize the spare network to tolerate a large number of faculty nodes and faulty links.
The rest of the paper is organized as follows. In the next section, notation and

definitions that are used throughout the paper are given. An overview of our
approach is presented in Section 3. In Section 4, we examine the reconfigurability of
the scheme. Both theoretical and simulation results are presented. Finally,
concluding remarks are discussed in Section 5.

2. Notation and definitions

Each node of an l-level k-ary tree is represented by Pði; jÞ where i is the level number
and j is the index of the node in the level i. Similarly, the spare node j in the level i is
denoted by Sði; jÞ at stage one and SSði; jÞ at stage two. The link connecting any two
nodes P and Q is represented by P?Q. Finally, we define the connection
requirement ðCRÞ of a spare node a in a cluster with multiple faulty nodes, as the
number of edge-disjoint paths that must be constructed within the spare network
from a to other unassigned spare nodes, in order to tolerate the faulty nodes within
the cluster.

3. Overview of the TECKT

In our scheme, at stage one, an enhanced cluster K-ary tree (ECKT) [8] with l levels
is constructed by assigning one spare node to the regular nodes of each sub-tree with
lc1 levels. Each of these sub-trees is called a cluster. Each spare node in a cluster is
connected to every regular node of its cluster via an intra-cluster spare link.
Furthermore, the spare nodes of neighboring clusters are interconnected using inter-
cluster spare links; two clusters are declared neighbors if there exists at least one
regular node in each cluster with a direct link between them. Figure 1 depicts a 6-
level enhanced cluster 2-ary trees with lc1 ¼ 3. In the figure, the regular links and the
spare links are shown with heavy and light lines, respectively, and a cluster is
highlighted with the dotted line.
At stage two, the process is repeated by assigning one spare node at stage two to

each sub-tree of spare nodes of stage one with lc2 levels. We call the overall structure
the two-stage enhanced cluster K-ary tree (TECKT). Hence, the spare nodes at stage
one and stage two are interconnected as a ks1 ¼ klc1 -ary tree with ls1 ¼ l=lc1 levels and

6 IZADI AND ÖZGÜNER



a ks2 ¼ kðlc16lc2Þ-ary tree with ls2 ¼ l=lc16lc2 levels, respectively; and, the number of
spare nodes at stage one and stage two are ðkl � 1Þ=ðklc1 � 1Þ and ðkl � 1Þ=
ðkðlc16lc2Þ � 1Þ, respectively. Figure 2 depicts a two-stage four-level two-ary enhanced
cluster tree with lc1 ¼ lc2 ¼ 2. In the figure, the regular links are shown with heavy
lines. The spare links at stage one and stage two are shown with light and dashed
lines, respectively. A cluster at stage one in the figure is highlighted with the dashed
triangle. Note that in Figure 2, the spare nodes at stage one are interconnected as a

Figure 1. A 6-level enhanced cluster 2-ary tree.

Figure 2. A two-stage enhanced cluster two-ary tree with l ¼ 4 and lc1 ¼ lc2 ¼ 2.

AN AUGMENTED K-ARY TREE MULTIPROCESSOR 7



four-ary tree ðklc1 ¼ 22Þ with two levels ðls1 ¼ 4=2Þ. At stage two, since
ðls2 ¼ 4=ð262Þ ¼ 1Þ, there is only one spare node.
We next describe how a TECKT tolerates faulty nodes and faulty links. Each node

is made of a computation module and a wave-switching communication module [15].
Wave-switching implements circuit-switching and wormhole-switching concurrently;
permanent connections and long messages use the circuit-switched segment while
short messages are transmitted using the wormhole-switching. We assume that faulty
nodes retain their ability to communication. This is a common assumption since the
hardware complexity of the communication module is much lower than the
computational module. Therefore, the probability of failure in the communication
module is much lower than the computation module. This assumption may be
avoided by duplicating the communication module in each node.
To tolerate a faulty node, the computation module of the spare node logically

replaces the computation module of the faulty node. In addition, if the spare node
resides in the cluster of faulty node, the new communication module consists of the
functional communication module of the faulty node merged with the appropriate
routine channel of the local spare node. Figure 3 illustrates how local spare node
Sð0;0Þ replaces faulty node Pð1; 1Þ. The heavy lines in Figure 3 represent effective
permanent connections after the reconfiguration; the permanent connections are
established by utilizing the circuit-switched routing channels of the communication
modules. If the assigned spare node and the faulty node belong to different clusters,
a dedicated path is constructed by linking the appropriate circuit-switched routing
channels of the intermediate spare nodes. For example, in Figure 2, if the node
Pð1; 1Þ is faulty and the spare Sð0; 0Þ is not available, the spare Sð1; 1Þ can replace it
by linking the appropriate circuit-switched routing channels of Pð1; 1Þ, Sð0; 0Þ, and
Sð1; 1Þ. The dedicated path then becomes an extension of the communication module
of the faulty node and the spare node functionally replaces the faulty one.
Furthermore, due to the capabilities of the circuit-switched routing modules, the
physical location of the faulty node and its assigned spare node becomes irrelevant.
The TECKT can tolerate both intra-cluster and inter-cluster link failures. This is
accomplished by logically replacing the routing channel that connects the processor
to a faulty link with the circuit-switched routing channel that connects it to a spare
link, and hence utilizing the spare links to establish a parallel path to the faulty link
and bypassing it. Figure 4 illustrates the reconfiguration of the TECKT in Figure 2

Figure 3. Spare node Sð0; 0Þ replacing faulty node Pð1; 1Þ.

8 IZADI AND ÖZGÜNER



in the presence of indicated faulty nodes and faulty links. For the sake of clarity,
only active spare links are shown in the figure and bypass paths are drawn in a
variety of line styles to distinguish them. As shown in the figure, spare nodes Sð0; 0Þ,
Sð1; 0Þ, Sð1; 1Þ, Sð1; 2Þ, Sð1; 3Þ, and SSð0; 0Þ logically replace faulty nodes Pð3; 0Þ,
Pð2; 0Þ, Pð3; 2Þ, Pð3; 1Þ, Pð3; 7Þ, and Pð2; 1Þ, respectively. Also, faulty links
Pð1; 0Þ? Pð0; 0Þ, Pð2; 2Þ? Pð3; 5Þ, and Pð1; 1Þ? Pð2; 3Þ are bypassed using parallel
paths Pð0; 0Þ? Sð0; 0Þ? Pð1; 0Þ, Pð2; 2Þ? Sð1; 2Þ? Pð3; 5Þ, and Pð2; 3Þ? Sð1; 3Þ
? Sð0; 0Þ? Pð1; 1Þ, respectively. Figure 5 illustrates how spare nodes SSð0; 0Þ and
Sð1; 1Þ replace faulty nodes Pð2; 1Þ and Pð3; 2Þ, respectively, by merging their
communication module. The heavy and dashed lines in Figure 5 pertain to similar
lines in Figure 4 and represent effective permanent circuit-switched connections after
the reconfiguration.
Considering only the faulty nodes in Figure 4 and examining the cluster associated

with the spare node Sð1; 0Þ, two out of three faulty nodes of the cluster have to be
assigned to available spare nodes from other fault-free clusters via edge-disjoint
paths through the spare node Sð1; 0Þ. Therefore, the CR (connection requirement) of
the spare node Sð1; 0Þ is said to be two.

4. Reconfigurability of the TECKT

To allow for fast reconfiguration in the strict mode of operation, the reconfiguration
algorithm should result in minimum changes in system interconnections. Hence,
under strict mode of operation, each faulty node of a cluster is replaced by the local
spare node at stage one, as illustrated by the example in Figure 6. The algorithm is
applied distributively, allowing each spare node at stage one to monitor the status of
the regular nodes within its cluster, and replace the faculty node as outlined in the

Figure 4. The TECKT in presence of faults.

AN AUGMENTED K-ARY TREE MULTIPROCESSOR 9



previous section. The reconfiguration algorithm under the strict mode of operation
fails if more than one node becomes faculty in a cluster.
The reconfiguration algorithm in the relaxed mode of operation assigns each

detected faulty node to a spare node at stage two so that every healthy regular node

Figure 5. Replacing faulty nodes Pð2; 1Þ and Pð3; 2Þ with spare nodes SSð0; 0Þ and SSð1; 1Þ.

Figure 6. Reconfiguration of the TECKT in strict mode.

10 IZADI AND ÖZGÜNER



would have an available spare node at stage one in its local cluster for possible
reconfiguration in the next strict mode of operation. For example, in Figure 2, in the
relaxed mode of operation, the task of faulty node Pð3; 3Þ is assigned to the spare
node SSð0; 0Þ while in the strict mode of operation, it would be assigned to the local
spare node, Sð1; 1Þ. Under relaxed mode of operation, if there is no unassigned spare
node at stage two, a spare node from stage one is assigned to the faulty node; details
of reconfiguration algorithm under the relaxed mode of operation is discussed later
in this section. We next establish theoretical and simulation results pertaining to the
relaxed mode of operation.
Let us group the spare nodes into three sets: SS (set of source nodes), SU (set of

used nodes), and ST (set of target nodes). A source node is a spare node at stage one
in a cluster with multiple faulty nodes. The set SS then represents the spare nodes
with a CR greater than 0. ST is the set of unassigned spare nodes, and SU consists of
spare nodes that have been assigned to faulty nodes. For example, considering only
the faulty nodes in Figure 4, after assigning faulty node Pð2; 1Þ to spare node SSð0; 0Þ
and the local spare node of each faulty cluster to a local faulty node, SS ¼ fSð1; 0Þg,
SU ¼ fSð1; 1Þ;Sð1; 3Þ; SSð0; 0Þg, and ST ¼ fSð0; 0Þ; Sð1; 2Þg. During the reconfigura-
tion algorithm, the spare nodes are dynamically assigned to the various sets. To
illustrate this, suppose the CR of a spare node a [ SS is greater than 0, and there is a
dedicated path from a to b [ ST . Consequently, b replaces a faulty node in the cluster
of a via the dedicated path. b is then called used and is assigned to SU . Also, the CR

of a is reduced by one. If the CR of a becomes zero, it is also marked as used and is
assigned to SU . The TECKT is called reconfigured when SS becomes an empty set.
From the previous section, it follows that the reconfigurability of the TECKT,

under the relaxed mode of operation, is a function of the number of dedicated and
edge-disjoint paths, within the spare trees at stages one and two, that can be
established between the local spare nodes (nodes in SS) of the clusters with multiple
faulty nodes and the available spare nodes (nodes in ST ). Obviously, if the spare
nodes are interconnected as a complete graph, the TECKT can tolerate up to
ðððks1Þls1 � 1Þ=ðks1 � 1ÞÞ þ ðððks2Þls2 � 1Þ=ðks2 � 1ÞÞ faulty nodes regardless of fault
distribution. Hence, the reconfigurability of the TECKT is a direct consequence of
the connectivity of the topology that interconnects the spare nodes. Let us represent
the topology of the graph connecting the spare nodes by G ¼ ðV ;EÞ, where V ¼
SS | SU | ST and E consists of the appropriate spare links. Let the CR of a node
n [ SS be represented by CRðnÞ, and let us denote the sum of the CRs of all nodes in a
set P as

P
n [P CRðnÞ. Since the number of faulty nodes cannot exceed the number of

spare nodes, jST j �
P

n [ SS CRðnÞ. The following theorem examines the connectivity
of G as it pertains to the reconfigurability of the TECKT.

Theorem 1 Consider a graph GðV ;EÞ, where V ¼ SS |SU |ST . The necessary and
sufficient condition for every node n [SS to have CRðnÞ edge-disjoint paths to CRðnÞ
nodes in ST is that the minimum number of edges leaving any subset of nodes P(V be
greater than or equal to

P
n [ ðP\SSÞ CRðnÞ � jP\ST j.

Proof: We first prove the necessary condition: if from every node n [ SS, there exists
CRðnÞ edge-disjoint paths to CRðnÞ nodes in ST , then the minimum number of edges

AN AUGMENTED K-ARY TREE MULTIPROCESSOR 11



leaving any subset of nodes P(V must be greater than or equal toP
n [ ðP\SSÞ CRðnÞ � jP\ ST j, which is the sum of the CRs of SS nodes within P

minus the number of ST nodes in P. Let us consider a subset P1(SS. Each of the
edge-disjoint paths from a node in SS to a node in ST must be carried over at least
one edge in the cut set ðP1;V � P1Þ. Therefore, the sum of the CRs of the nodes in P1,
which represents the total required number of edge-disjoint paths from the nodes in
P1 to the nodes in ST , must be smaller than or equal to the number of edges in the cut
set ðP1;V � P1Þ. Now, let us consider a subset P(V and denote the graph
interconnecting the nodes of P as g. Obviously, g is a subgraph of G. Within g, there
exists only jP\ ST j target nodes. Therefore, at most jP\ ST j of the edge-disjoint
paths may exist in g. The rest of the paths must then be carried over the cutset
ðP;V � PÞ. Therefore, the necessary condition follows.
We next prove the sufficient condition: if the minimum number of edges leaving

any subset of nodes P(V is greater than or equal to
P

n [ ðP\ SSÞ CRðnÞ � jP\ ST j,
every node n [ SS would have CRðnÞ edge-disjoint paths to CRðnÞ nodes in ST . Let us
create a new graph G0 ¼ ðV 0;E0Þ by adding two nodes s and t to G as specified below
and depicted by Figure 7. Each node in ST is connected to t via a single edge. Each
node n [ SS is connected to s via CRðnÞ parallel edges. Let the sum of the CR of all
nodes in SS be L. The number of edge-disjoint paths between s and t in G0, according
to Menger’s theorem [16], is equal to the size of the mincut in G0. We will show that
there always exists an ðs; tÞ mincut in G0 whose size is equal to L. The mincut in G0

may exist at s, t, G, or some combination of them. By construction, the size of the cut
at s equals L. Similarly, the cut size at t is greater than or equal to L since
jST j �

P
n [ SS CRðnÞ ¼ L. Per stated condition, for P ¼ s| SS or P ¼ s| SS | SU ,

the cut ðP;V 0 � PÞmust have a cutsize greater than or equal to L. Consider a general
cut in G0 crossing L1 of the edges connecting s to SS nodes, L2 edges of G, and L3 of
the edges connecting ST nodes to t (Figure 7). The number of ST nodes on the
unshaded side of the cut is L3. The sum of the CRs of SS nodes within the same side
of the cut is L� L1. Therefore, the stated condition can be formulated as L2 �
ðL� L1Þ � L3 or L1 þ L2 þ L3 � L. From this inequality, it follows that any cut in G0

Figure 7. A cut in graph G0.

12 IZADI AND ÖZGÜNER



has a cutsize greater than or equal to L. Therefore, L is the size of the mincut. Hence,
there exist L edge-disjoint paths between nodes s and t. Each of these s-t edge-
disjoint paths must pass through a unique node in ST because each node in ST is
connected to t via a single edge. Since there only exists L edges from s (one per path),
the number of edge-disjoint paths from s that passes through each node n [ SS is
equal to CRðnÞ. Therefore, each node n [ SS can make CRðnÞ edge-disjoint paths to
CRðnÞ distinct nodes in ST . &

We next establish a necessary condition for the reconfigurability of the TECKT
based on Theorem 1.

Theorem 2. The necessary condition for the TECKT to reconfigure in the presence
of faulty nodes is that the number of faulty nodes in each sub-tree with li levels
ðli ¼ j6lc16lc2; j ¼ 1; 2; . . .Þ be less than or equal to ððks1Þðli=lc1Þ � 1Þ=ðks1 � 1Þþ
ððks2Þðli=ðlc16lc2ÞÞ � 1Þ=ðks2 � 1Þ þ 2.

Proof: Let us examine the spare trees of the TECKT at stage one and stage two,
starting at the leaf nodes and moving toward the root node. The number of spare
nodes at stages one and two of a sub-tree of the TECKT with li ¼ j6lc16lc2 levels
are ððks1Þð j6lc2Þ � 1Þ=ðks1 � 1Þ and ððks2Þ j � 1Þ=ðks2 � 1Þ, respectively. Two such
spare sub-trees with ks1 ¼ 2, ks2 ¼ 4, and lc2 ¼ 2 are depicted in Figure 8 for j ¼ 1
and j ¼ 2, with dotted lines around the smaller and larger subsets, respectively. Since
only two additional inter-cluster spare link exists that connect the sub-tree to
external spare nodes, the maximum number of faulty nodes that can be tolerated in
the sub-tree is ððks1Þð j6lc2Þ � 1Þ=ððks1 � 1ÞÞ þ ððks2Þ j � 1Þ=ððks2 � 1ÞÞ þ 2. &

Figure 8. A spare tree at stages one and two.

AN AUGMENTED K-ARY TREE MULTIPROCESSOR 13



Examining Figure 8, it is obvious that Theorem 1 is violated for a cluster with
more than three faulty nodes; the CR of the local spare node must be at most two
since only two inter-cluster spare links are crossed. Other examples of the TECKT
will yield similar results. Therefore, under a fixed number of faulty nodes per cluster,
no theoretical lower bound on the number of tolerated faulty nodes per cluster can
be established.
We next examine the simulation results based on the following reconfiguration

algorithm. An optimal reconfiguration algorithm can be developed by utilizing the
maxflow algorithm. Here, optimality is measured as the ability to assign a spare node
to every faulty node whenever such an assignment is feasible vis-à-vis Theorem 1.
The main drawback to a reconfiguration using the above algorithm is that a digraph
representation of the spare network has to be constructed [17] and the spare node
assignment has to be done by the host processor. To overcome these deficiencies, we
next present a near-optimal reconfiguration algorithm, which is called Alloc-Spare-
TECKT. The algorithm consists of four parts as specified below:

1. Early abort: The solvability test based on Theorem 2 is made to determine
whether the reconfiguration is feasible.

2. Assignment at stage two: We utilize Lee’s path-finding algorithm [18] to find a set
of candidate spare nodes at stage two that can be assigned to the faulty node. The
algorithm begins by constructing a breadth-first search of minimum depth d6
ð1 � d � 2ðls2 � 1ÞÞ in the spare tree of stage two from the local spare node of a
faulty cluster. If a free spare node is found, a path is formed to the faulty node.
The algorithm guarantees that a path to a spare node will be found if one exits
and the path will be the shortest possible [18]. Once a path is formed, the links
associated with that path are deleted from the spare tree, resulting in a new
structure. If there still remain some uncovered faulty nodes, a solvability test
based on Theorem 2 is performed on the new structure, and this step is repeated
for a higher depth d in stage two of the spare tree.

3. Local assignment: If all spare nodes at stage two are assigned and there still
remain some faulty nodes, the local spare node of every faulty cluster is assigned
to a faulty node within the cluster.

4. Assignment at stage one: If there remain additional faulty nodes, we apply Lee’s
path-finding algorithm to both stages one and two from the local spare node of a
faulty cluster with an unassigned faulty node. Reconfiguration fails if
d > 2ðls1 þ ls2 � 1Þ, which is the longest acyclic path in the spare tree.

To illustrate our reconfiguration algorithm, let us consider Figure 9. The algorithm
avoids the early abort of step one, since the total number of faulty nodes and spare
nodes in the subtree with li ¼ j6lc16lc2 ¼ 16262 ¼ 4 levels are the same. During
the second step, the algorithm randomly selects the faulty node Pð2; 1Þ. A breadth-
first-search of depth one, at stage two, from the local spare node Sð1; 1Þ yields the
available spare node SSð0; 0Þ. Hence, the spare node SSð0; 0Þ is assigned to the faulty
node Pð2; 1Þ. Since no more unassigned spare node is available at stage two, the
algorithm moves on to step three, where randomly faulty nodes Pð3; 7Þ, Pð3; 2Þ, and
Pð2; 0Þ are assigned to their local spare nodes Sð1; 3Þ, Sð1; 1Þ and Sð1, 0), respectively.

14 IZADI AND ÖZGÜNER



Finally, during step four, faulty nodes Pð3; 0Þ and Pð3; 1Þ are assigned to spare nodes
Sð0; 0Þ and Sð1; 2Þ using a breadth-first- search of depth two from the local spare node
Sð1; 0Þ.
We simulated the reconfigurability of a 9-level 3-ary tree with lc1 ¼ lc2 ¼ 3. The

simulation results for the cluster approach [17] (a local reconfiguration scheme), the
enhanced cluster approach [8], and the two-stage enhanced cluster approach are
shown in Figure 10. The result suggests that the TECKT, under the relaxed mode of
operation, can tolerate nearly 200 faulty nodes 90% of the time. Hence, the two-stage
approach improves the reconfigurability of the given tree by almost a factor of two
over the enhanced cluster approach and a factor of four over the local
reconfiguration scheme. The approaches in Raghavendra et al. [11] and Lowrie
and Fuchs [13] perform slightly worse and slightly better than the local
reconfiguration scheme, respectively. Finally, the approach proposed in Kwan and
Toida [10] only tolerates two faulty nodes and the scheme in Dutt and Hayes [12]
tolerates a fixed number of faulty nodes at the expense of large node degrees.
In the presence of faulty links, no theoretical lower bounds on the number of

tolerated faulty links can be established, since more than one faulty link sharing a
regular node results in a failed reconfiguration. For example, in Figure 2, if links
Pð1; 0Þ? Pð0; 0Þ and Pð0; 0Þ? Pð1; 1Þ, are faulty, the spare link Pð0; 0Þ? Sð0; 0Þ has
to be used by both of them, which is not possible. Hence, only a simulation result
may be attained. Also, since each intra-cluster link failure can only be replaced by
one spare link parallel path, no distinction between the strict mode and relaxed mode
can be made. The attained simulation results for the TECKT are similar to the
ECKT [8]. The TECKT can tolerate a few more faulty links than the ECKT due to
additional bypass paths at the second stage.

Figure 9. Reconfiguration of the TECKT in relaxed mode.

AN AUGMENTED K-ARY TREE MULTIPROCESSOR 15



5. Conclusions

In this paper, we proposed a scheme to allow a tree-based multiprocessor tolerate
faulty nodes in real time. During the strict mode of operation, the scheme uses local
reconfiguration, which is the fastest and involves the fewest switch changes. Then, in
the next relaxed mode of operation the tasks of local spare nodes, at stage one, are
transferred to the spare nodes at the second stage by applying a global
reconfiguration scheme. If a node becomes faulty during the relaxed mode of
operation, the scheme tries to assign a spare node at stage two to replace it. This is
done to maximize the probability that in the next strict mode of operation local spare
nodes may be available to replace potential faulty nodes.
Our result indicates that no theoretical lower bound on the number of tolerated

faulty nodes or faulty links can be established. However, our simulation results in the
relaxed mode of operation and under random distribution of faulty nodes reveal that
the TECKT can tolerate a relatively large number of faulty nodes. Compared to
other proposed schemes, the TECKT can tolerate significantly more faulty nodes for
the similar overhead.

References

1. J. Dongarra and D. Walker. The quest for petascale computing. IEEE Computing in Science and

Engineering, 32–39, May 2001.

Figure 10. Reconfiguration of a tree under random fault distribution.

16 IZADI AND ÖZGÜNER



2. S. Bhatt, F. Chung, F. Leighton, and A. Rosenberg. Efficient embedding of trees in hypercubes. SIAM

Journal of Computing, 21(1):151–162, 1992.

3. K. Li. Determining the expected load of dynamic tree embedding in hypercubes. Proceedings of 17th

International Conference on Distributed Computing Systems, pp. 508–515, 1997.

4. S. Lee and H. Choi. Embedding of complete binary trees in meshes with row-column routing. IEEE

Transactions on Parallel and Distributed Systems, 7(5):493–497, 1996.

5. C. E. Leiserson. The network architecture of the connection machine CM-5. In Proceedings of the 4th

Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 272–285, June 1992.

6. Meiko World Incorporated. Computing Surface 2 Reference Manuals, Preliminary Edition, 1993.

7. H. L. Muller, P. W. Stallard, and D. H. Warren. An evaluation study of a link-based data diffusion

machine. In Proceedings of the 8th International Parallel Processing Symposium, pp. 115–128, April

1994.

8. B. Izadi and F. Özgüner. Reconfigurable k-ary tree multiprocessors. International Journal of Parallel

and Distributed Systems and Networks, 3(4):227–234, 2000.

9. J. P. Hayes. A graph model for fault-tolerant computing systems. IEEE Transactions on Computers,

c-25:875–884, September 1976.

10. C. L. Kwan and S. Toida. An optimal 2-FT realization of binary symmetric hierarchical tree systems.

Networks, 12(12):231–239, 1982.

11. C. Raghavendra, A. Avizienis, and M. D. Ercegovac. Fault tolerance in binary tree architectures.

IEEE Transactions on Computers, c-33:568–572, June 1984.

12. S. Dutt and J. Hayes. On designing and reconfiguring k-fault-tolerant tree architectures. IEEE

Transactions on Computers, 39:490–503, April 1990.

13. M. B. Lowrie and W. K. Fuchs. Reconfigurable tree architecture using subtree oriented fault

tolerance. IEEE Transactions on Computers, c-36:1172–1182, October 1987.

14. R. Libeskind-Hadas, N. Shrivastava, R. Melhem, and C. Liu. Optimal reconfiguration algorithms for

real-time fault-tolerant processor arrays. IEEE Transactions on Parallel and Distributed Systems,

6:498–510, May 1995.

15. J. Duato, P. Lopez, and S. Yalamanchili. Deadlock- and livelock-free routing protocols for wave

switching. In Proceedings of the 11th International Parallel Processing Symposium, pp. 570–577, April

1997.

16. C. J. Colbourn. The Combinatorics of Network Reliability, Oxford University Press, 1987.

17. B. Izadi. Design of fault-tolerant distributed memory multiprocessors. Ph.D. thesis, the Ohio State

University, 1995.

18. C. Y. Lee. An algorithm for path connection and its applications. IRE Transactions on Electronic

Computers, ec-10:346–365, 1961.

AN AUGMENTED K-ARY TREE MULTIPROCESSOR 17


