
International Journal of Parallel and Distributed Systems and Networks, Vol. 3, No. 4, 2000

RECONFIGURABLEK-ARYTREE

MULTIPROCESSORS

B.A. Izadi∗ and F. Özgüner∗∗

Abstract

In this paper, we present a strongly fault-tolerant design for the

l-level k-ary tree multiprocessor and examine its reconfigurability.

Our design assigns one spare node to the regular nodes of each

subtree with lc levels. Moreover, spare nodes are interconnected

to form a spare tree. Our approach utilizes the circuit-switched

capabilities of the communication modules of the spare nodes to

tolerate a large number of faulty nodes and faulty links. Both

theoretical and simulation results are presented. Compared with

other proposed schemes, our approach can tolerate significantly

more faulty nodes and faulty links with a low overhead and no

performance degradation.

Key Words

Fault tolerance, k−ary tree, spare allocation, reconfiguration, aug-

mented multiprocessor, circuit-switched

1. Introduction

The tree is a useful topology for networks of hierarchical
computing systems and has been used in the design of
multicomputers [1]. One attractive feature of the tree-
based architecture with n-nodes is that any two nodes
can exchange information in O(logn) time. A major
disadvantage of this topology is that a single faulty node
or faulty link can disable the operation of the entire tree.
Hence, some form of fault tolerance is essential.

Fault-tolerant trees have been examined by a num-
ber of researchers. To sustain the same level of per-
formance, some researchers have investigated hardware
schemes where the spare nodes and spare links are used to
replace faulty ones. In the literature, a reconfigurable sys-
tem that retains the same service level, as well as keeping
the same system topology after the occurrence of faults,
is called a strongly fault-tolerant [2] system. A strongly
fault-tolerant system can support the original task par-
tition, and hence it can use faster deterministic routers
instead of slower adaptive ones.

∗ Department of Electrical and Computer Engineering, State
University of New York, 75 South Manheim Blvd., New Paltz,
NY 12561 U.S.A.; e-mail bai@engr.newpaltz.edu

∗∗ Department of Electrical Engineering, Ohio State University,
2015 Neil Ave., Columbus, OH 43210-1277, U.S.A.; e-mail
ozguner@ee.eng.ohio-state.edu

(paper no. 204-0189)

An optimal 1-fault-tolerant k-ary tree with l-levels was
proposed by Hayes [3]. The scheme for k = 4 and l = 3
is depicted in Fig. 1. Upon a node failure, using the
spare nodes and the spare links, a k-ary tree with l-levels is
maintained. Hence, the scheme is a strongly fault-tolerant
one. Kwan and Toida [4] extended the approach to design
an optimal 2-fault-tolerant binary tree. Other researchers
[5–7] have proposed schemes to tolerate more faulty nodes,
based on a covering technique where a node u is said to
cover a node v if node u replaces node v when node v
becomes faulty. Then the node covering u replaces u,
and so on. The scheme in [5] requires a node degree of
m(k+1) to toleratem faulty nodes in a k-ary tree. A 200%
spare link overhead is required in [6] to tolerate one faulty
node per level of the tree. The approach in [7] attains a
slightly better result than that of [6] with 100% spare link
overhead. To reduce the number of required spare links,
some researchers [8–11] have proposed local reconfiguration
schemes where a spare node is assigned to each set of nodes.
One faulty node from each set is tolerated. The schemes
have spare link requirements similar to ours.

Figure 1. Optimal 1-fault-tolerant tree proposed by Hayes.

In this paper we propose a global reconfiguration
scheme that utilizes circuit-switched communication to
make the k-ary tree strongly fault tolerant. In our scheme,
one spare node is assigned to each group of regular nodes,
called a cluster (Fig. 2); each spare node is connected to ev-
ery regular node of its cluster via an intracluster spare link.
Furthermore, the spare nodes of neighbouring clusters are
interconnected using intercluster spare links; two clusters
are declared neighbours if there exists at least one regular
node in each with a direct link between them. We call
the resulting topology the enhanced cluster k-ary Tree
(ECKT). Our approach differs from others in the way we
interconnect the spare nodes to the faulty regular nodes:
we utilize the circuit-switched capabilities of various spare
nodes’ communication modules to construct edge-disjoint
paths between multiple faulty regular nodes of a cluster
and multiple unassigned spare nodes in different clusters.
We use this property to show that our approach can toler-
ate multiple faulty nodes within a cluster. Hence, it has a
higher fault-tolerant capability than other approaches. A
similar technique is used to tolerate faulty links by utilizing

1

the spare links to establish parallel paths with them and
bypassing them.

The rest of the paper is organized as follows. In
the next section, notation and definitions are given. An
overview of our approach is presented in Section 3. In Sec-
tion 4 we examine the reconfigurability of the ECKT; both
theoretical and simulation results are presented. Conclud-
ing remarks are given in Section 5.

2. Notation and Definitions

Each node of an l-level k-ary tree is represented by P (i, j)
where i is the level number and j is the index of the
node in the level i. Similarly, the spare node j in the
level i is denoted by S(i, j). The link connecting any two
nodes P and Q is represented by P → Q. Finally, we
define the connection requirement (CR) of a spare node
α in a cluster with multiple faulty nodes as the number of
edge-disjoint paths that must be constructed, within the
spare tree from spare node α to other spare nodes in the
fault-free clusters, so that faulty nodes can be tolerated.

3. Overview of the ECKT

An ECKT with l levels is constructed by assigning one
spare node to the regular nodes of each subtree with lc
levels. We call such a subtree a cluster. Then, the

number of regular nodes in one cluster is klc−1
k−1 . The

degree of a regular node at the root is k + 1, at each
internal node is k + 2, and at each leaf node is 2. The
network interconnecting the spare nodes (the spare tree) is
connected as a ks-ary tree with ls levels, where ks = klc and

ls =
l
lc
. Hence, the number of spare nodes is ks

ls−1
ks−1 and the

number of spare links within the spare tree is ks
(ls−1)−1
ks−1 ks.

Figs. 2(a) and 2(b) depict 6-level enhanced cluster 2-ary
trees with lc = 3 and lc = 2, respectively. In the figure, the
regular links and the spare links are shown with heavy and
light lines, respectively, and a cluster is highlighted with
a dotted line. Note that the spare nodes in Fig. 2(a) are
interconnected as an 8-ary tree (ks = 23) with two levels
(ls = 6

3), and in Fig. 2(b) they are interconnected as a
4-ary tree with three levels.

Figure 2. A 6-level enhanced cluster 2-ary tree with
(a) lc = 2 and (b) lc = 3.

We next describe how an ECKT tolerates faulty nodes
and faulty links. We assume that faulty nodes retain their
ability to communicate. This is a common assumption
as, in today’s distributed memory multiprocessors, the
computation and the communication modules of a node
are separate. Furthermore, because the complexity of
the computation module is much greater than that of the
communication module, the probability of a failure in the
computation module is much higher. This assumption may
be avoided by duplicating the communication module in
each node.

To facilitate reconfiguration, the routing channels de-
scribed below are used at each node. The block diagrams
of a regular node router and a spare node router for an

ECKT are depicted in Fig. 3. Each node consists of a
computation module and a communication module. The
communication module is made of several routing chan-
nels, and each routing channel consists of a channel in
and a channel out. For example, the routing channel 0 of
the regular node depicted in Fig. 3(a) is made of Ch0 In
and Ch0 Out. Each regular node router consists of r + 1
routing channels, allowing it to connect to one of its r
neighbouring regular nodes as well as its designated spare
node. The connection to a neighbouring regular node is
provided via ChX In and ChX Out channels, where X = 0
for the parent node, X = 1 for the leftmost child node,
X = 2 for the next child node to the right, and so on. The
connection to the designated spare node is facilitated using
Spare In and Spare Out channels. Fig. 3(b) illustrates
the communication module of a spare node with n regular
nodes in its designated cluster and j neighbouring spare
nodes. The node-routing channel PX (Node PX In and
Node PX Out) allows the spare node to be connected to
the regular nodeX within its cluster. Similarly, connection
to another neighbouring spare node is provided using the
appropriate Spare ChX In and Spare ChX Out.

Figure 3. Block diagram of (a) regular node, and (b) spare
node.

Connecting a spare node to a regular node is done
to tolerate a node failure. If the spare node resides in
the cluster of the faulty node, the spare routing channel
(Spare In and Spare Out) of the faulty node is connected
to the appropriate node routing channel of the spare node.
For example, in Fig. 2(a), if the node P(1, 1) becomes
faulty the spare node S(0, 0) replaces it, as illustrated
in Fig. 4. The heavy lines in the figure represent the
permanent connections made after the reconfiguration.
Hence, the computation module of the spare node replaces
the computation module of the faulty node. In addition,
the new communication module consists of the functional
communication module of the faulty node merged with
the appropriate routine channel of the spare node. Due
to the circuit-switched capabilities of the communication
modules, the cost of communication is nearly constant
between any two given nodes. Therefore, replacing P(1, 1)
with S(0, 0) has negligible effect in the performance of the
system.

Figure 4. Spare node S(0,0) replacing faulty node P(1,1).

If the assigned spare node and the faulty node belong
to different clusters, a dedicated path to connect them
needs to be established. Such a path can be constructed
by linking the appropriate routing channels of the inter-
mediate spare nodes. For example, in Fig. 2(a), if the
node P(2, 1) is faulty and the spare S(0, 0) is not available,
the spare S(1, 1) can replace it by linking the appropriate
spare routing channels of S(0, 0) and S(1, 1). Moreover,
the proper node-routing channel of S(0, 0) is linked with
the spare routing channel of P(2, 1). The dedicated path
then becomes an extension of the communication module
of the faulty node, and the spare node functionally replaces

2

the faulty one. Furthermore, due to the capabilities of
the circuit-switched routing modules, the physical location
of the faulty node and its assigned spare node becomes
irrelevant.

There are three cases that may involve routing data
through a faulty node. The first is when the message
originates from the faulty node. Here, its spare replacement
sends its data via its injection channel (Fig. 3(b)) out
to the appropriate Node PX Out channel. The message
is then routed to the communication module (CM) of
the faulty node via Spare In. Depending on the final
destination node, any of the channel outs may be selected.
The second case is when the destination of the message
is the faulty node. Once the data reach the CM of the
faulty node, they are automatically routed to the channel
Spare Out instead of the Consumption Channel. The spare
node’s CM would consequently receive the message using
the appropriate channel (Node PX In). The message is
then sent to the computation module of the spare node
via the Consumption Channel. The third case is when
the faulty node is neither the source nor the destination
of the message, but is used merely as an intermediate
switch connection. In this case, the spare node is not
involved at all, and routing is done normally. Therefore,
each spare node has dual functions: one is to be the logical
replacement for a faulty node, and the other is to be an
intermediate switch connection. Both functions may be
active at the same time. Note that the connection of
the spare node router to the active node(s) is established
during the reconfiguration and remains intact thereafter.

Upon detecting a node failure, the spare node within
the respective cluster logically replaces the faulty node. If
the local spare node is not available, an available spare
node from a different cluster may be used. Therefore,
multiple logical spare nodes can exist in a cluster. Every
spare node consequently activates its links to the active
channels and disables the rest. The spare node’s CM
then forwards messages bound for other spare nodes as
well as forwarding/receiving its data to/from other regular
nodes via the CM of the faulty node as discussed above.
Therefore, no modification to the available computation or
communication algorithm is needed.

The ECKT can tolerate both intracluster and inter-
cluster link failures. This is accomplished by utilizing the
spare links to establish a parallel path to the faulty link.
To tolerate an intracluster link failure, using the spare links
and through the local spare node, a parallel path to the
faulty link is established. For example, in Fig. 2(a), if the
link P(3, 1) → P(4, 2) is faulty, it can be bypassed by the
path P(3, 1) → S(1, 1) → P(4, 2) as specified below. The
CM of S(1, 1) is configured so that the node-routing chan-
nel 0 and the node-routing channel 1 are interconnected. In
addition, regular nodes P(3, 1) and P(4, 2) logically replace
their routing channels, which connect them to the faulty
link, with their spare routing channels. Consequently,
all messages that are bound for the faulty link are sent
through the path P(3, 1) → S(1, 1) → P(4, 2). To tolerate
an intercluster link failure, more than one spare node CM
is utilized. For example, in Fig. 2(a), the path P(2, 0) →
S(0, 0) → S(1, 0) → P(3, 0) can bypass the intercluster

faulty link P(2, 0) →P(3, 0) as specified below. The node
P(3, 0) is connected to the spare node S(1, 0) by linking
P(3, 0)’s Spare In and Spare Out to S(1, 0)’s Node P0 Out
and Node P0 In, respectively. Similarly, the spare routing
channel of the node P(2, 0) is connected to the node P1
routing channel of the spare node S(1, 0). Finally, the
spare nodes S(0, 0) and S(1, 0) are interconnected by link-
ing their appropriate spare channel outs and spare channel
ins. Reconfiguration fails if either of the two nodes at the
end of a faulty link is also faulty, because the pertinent
spare link has to be used to tolerate both the faulty node
and the faulty link. The reconfiguration also fails if two
faulty links have a common regular node, as the spare link
that connects to the shared regular node has to be used in
more than one dedicated parallel path.

Fig. 5 illustrates the reconfiguration of the ECKT in
Fig. 2(a) in the presence of indicated faulty nodes and
faulty links. For the sake of clarity, in Fig. 5 nonactive spare
links are deleted and active spare links are drawn in a vari-
ety of line styles to distinguish the bypass paths. As shown
in the figure, spare nodes S(0, 0), S(1, 1), S(1, 6), S(1, 7),
S(1, 3), S(1, 0), S(1, 2), S(1, 4), and S(1, 5) logically replace
P(1, 1), P(2, 1), P(2, 3), P(3, 7), P(4, 8), P(5, 2), P(5, 9),
P(5, 19), and P(5, 20), respectively. Also, intracluster
faulty links P(3, 1) → P(4, 2), P(4, 4) → P(5, 8), P(3, 3) →
P(4, 7), and intercluster faulty link P(2, 0) → P(3, 0) are
bypassed using parallel paths P(3, 1) → S(1, 1) → P(4, 2),
P(4, 4) → S(1, 2) → P(5, 8), P(3, 3) → S(1, 3) → P(4, 7),
and P(2, 0) → S(0, 0) → S(1, 0) → P(3, 0), respectively.
Considering only the faulty nodes in Fig. 5 and examin-
ing the cluster associated with the spare S(0, 0), we see
that two out of three faulty nodes of the cluster have to
be assigned to available spare nodes from other fault-free
clusters via edge-disjoint paths through the spare S(0, 0).
Therefore, the CR (connection requirement) of the spare
S(0, 0) is 2. Note that the CR of a spare node is equal to
the number of faulty nodes that reside within its cluster,
minus one.

Figure 5. The ECKT in presence of faults.

4. Reconfigurability of the ECKT

4.1 Reconfiguration under Faulty Nodes

Let us group the spare nodes into three sets: SS (set of
source nodes), SU (set of used nodes), and ST (set of target
nodes). A source node is a spare node in a cluster with
multiple faulty nodes. The set SS then represents the spare
nodes with a CR greater than 0. ST is the set of unassigned
spare nodes, and SU consists of spare nodes that have
been assigned to faulty nodes and have a CR of 0. For
example, considering only the faulty nodes in Fig. 5, after
assigning the local spare node to a local faulty node in
each faulty cluster, SS = {S(0, 0)}, SU = {S(1, 0), S(1, 2),
S(1, 4), S(1, 5), S(1, 7)}, and ST = {S(1, 1), S(1, 3), S(1, 6)}.
During the reconfiguration algorithm, which is discussed
later in this section, the spare nodes are dynamically
assigned to the various sets. To illustrate this, suppose the
CR of a spare node α ∈ SS is greater than 0 and there is a

3

dedicated path from α to β ∈ ST . Consequently, β replaces
a faulty node in the cluster of α via the dedicated path. β
is then called used and is assigned to SU . Also, the CR of
α is reduced by one. If the CR of α becomes zero, it is also
marked as used and is assigned to SU . The ECKT is called
reconfigured when SS becomes an empty set.

From the previous section, it follows that the reconfig-
urability of the ECKT is a function of the number of ded-
icated and edge-disjoint paths, within the spare tree, that
can be established between the local spare nodes (nodes in
SS) of the clusters with multiple faulty nodes and the avail-
able spare nodes (nodes in ST) of the fault-free clusters.
However, spare nodes do not have to be interconnected as
a tree. Obviously, if the spare nodes are interconnected

as a complete graph, the ECKT can tolerate up to ks
ls−1

ks−1
faulty nodes regardless of their distribution. Hence, the re-
configurability of the ECKT is a direct consequence of the
connectivity of the topology that interconnects the spare
nodes. Let us represent the topology of the graph connect-
ing the spare nodes by G = (V,E) where V=SS

⋃

SU
⋃

ST
and E consists of the appropriate spare links. Let the CR

of a node n ∈ SS be represented by CR(n), and denote the
sum of the CR’s of all nodes in a set P as

∑

n∈PCR(n).
As the number of faulty nodes cannot exceed the number
of spare nodes, |ST | ≥

∑

n∈SS
CR(n). The following the-

orem examines the connectivity of G as it pertains to the
reconfigurability of the ECKT.

Theorem 1. Consider a graph G(V,E) where V =
SS

⋃

SU
⋃

ST . The necessary and sufficient condition for
every node n ∈ SS to have CR(n) edge-disjoint paths to
CR(n) nodes in ST is that the minimum number of edges
leaving any subset of nodes P ⊆ V be greater than or equal
to

∑

n∈(P
⋂

SS)CR(n)− |P
⋂

ST |.
Proof. We first prove the necessary condition: if from

every node n ∈ SS , there exists CR(n) edge-disjoint paths
to CR(n) nodes in ST , then the minimum number of edges
leaving any subset of nodes P ⊆ V must be greater than or
equal to

∑

n∈(P
⋂

SS)CR(n) − |P
⋂

ST |, which is the sum
of the CR’s of SS nodes within P minus the number of ST
nodes in P .

Let us consider a subset P1 ⊆ SS . Each of the edge-
disjoint paths from a node in SS to a node in ST must be
carried over at least one edge in the cutset (P1,V − P1).
Therefore, the sum of the CR’s of the nodes in P1, which
represents the total required number of edge-disjoint paths
from the nodes in P1 to the nodes in ST , must be smaller
than or equal to the number of edges in the cutset (P1,V −
P1). Now, let us consider a subset P ⊆ V and denote the
graph interconnecting the nodes of P as g. Obviously, g
is a subgraph of G. Within g, there exists only |P

⋂

ST |
target nodes. Therefore, at most |P

⋂

ST | of the edge-
disjoint paths may exist in g. The rest of the paths must
then be carried over the cutset (P, V − P). Therefore, the
necessary condition follows.

We next prove the sufficient condition: if the minimum
number of edges leaving any subset of nodes P ⊆ V is
greater than or equal to

∑

n∈(P
⋂

SS)CR(n) − |P
⋂

ST |,
every node n ∈ SS would have CR(n) edge-disjoint paths to
CR(n) nodes in ST . Let us create a new graphG′ = (V ′, E′)

by adding two nodes s and t to G as specified below and
depicted by Fig. 6. Each node in ST is connected to t via
a single edge. Each node n ∈ SS is connected to s via
CR(n) parallel edges. Let the sum of the CR of all nodes
in SS be L. Number of edge-disjoint paths between s and t
in G′, according to Menger’s theorem [12], is equal to the
size of the mincut in G′. We will show that there always
exists an (s, t) mincut in G′ whose size is equal to L. The
mincut in G′ may exist at s, t, G, or some combination
of them. By construction, the size of the cut at s equals
L. Similarly, the cutsize at t is greater than or equal to L
because |ST | ≥

∑

n∈SS
CR(n) = L. Per stated condition,

for P = s
⋃

SS or P = s
⋃

SS
⋃

SU , the cut (P, V ′ − P)
must have a cutsize greater than or equal to L. Consider a
general cut in G′ crossing L1 of the edges connecting s to
SS nodes, L2 edges of G, and L3 of the edges connecting
ST nodes to t (Fig. 6). The number of ST nodes on the
unshaded side of the cut is L3. The sum of the CR’s of SS
nodes within the same side of the cut is L− L1. Therefore,
the stated condition can be formulated as L2 ≥ (L− L1)−
L3 or L1+ L2+ L3 ≥ L. From this inequality, it follows
that any cut in G′ has a cutsize greater than or equal to
L. Therefore, L is the size of the mincut. Hence, there
exist L edge-disjoint paths between nodes s and t. Each of
these s-t edge-disjoint paths must pass through a unique
node in ST because each node in ST is connected to t via
a igle edge. As there only exists L edges from s (one per
path), the number of edge-disjoint paths from s that passes
through each node n ∈ SS is equal to CR(n). Therefore,
each node n ∈ SS can make CR(n) edge-disjoint paths to
CR(n) distinct nodes in ST . QED

Figure 6. A cut in graph G′.

We next apply Theorem 1 to the spare tree and exam-
ine the reconfigurability of the ECKT.

Theorem 2. The necessary condition for the ECKT
to reconfigure in the presence of faulty nodes is that the
number of faulty nodes in each subtree with li levels

(li = j×lc; j = 1, 2, · · ·), be less than or equal to k

li
lc
s −1
ks−1 +1.

Proof. Let us examine the ECKT by starting at
the leaf nodes and moving towards the root node. The
number of spare nodes of a subtree with li = j × lc levels

is
kj
s−1

ks−1 ; two such subtrees with li = lc and li = 2lc are
depicted in Fig. 7, with dotted lines around the smaller and
larger subsets, respectively. Because only one additional
intercluster spare link exists that connects the subtree to
an external spare node, the maximum number of faulty

nodes that can be tolerated in the subtree is
kj
s−1

ks−1 + 1.
QED

Figure 7. An ECKT with k = 2, l = 6, and lc = 3.

From examination of the cluster shown by the dotted
line in Fig. 7, it is obvious that Theorem 1 is violated
for a cluster with more than two faulty nodes; the CR of
the local spare node must be at most one, as only one
intercluster spare link is crossed. Other examples of the
ECKT will yield similar results. Therefore, under a fixed

4

number of faulty nodes per cluster, no theoretical lower
bound on the number of tolerated faulty nodes per cluster
can be established.

We next examine the simulation results based on the
following reconfiguration algorithm. An optimal reconfigu-
ration algorithm can be developed by utilizing the maxflow
algorithm. Here, optimality is measured as the ability to
assign a spare node to every faulty node whenever such an
assignment is feasible vis-à-vis Theorem 1. The main draw-
back to a reconfiguration using the above algorithm is that
a digraph representation of the spare network has to be
constructed [11] and the spare node assignment has to be
done by the host processor. To overcome these deficiencies,
we next present a near-optimal reconfiguration algorithm,
which is called Alloc-Spare. The algorithm is near opti-
mal, as there can be cases where the reconfiguration fails
even though Theorem 1 holds; these cases are extremely
rare and we did not encounter any in our simulation runs.
The algorithm consists of three parts:
1. Early Abort: A solvability test based on Theorem 2 is

performed to determine whether the reconfiguration is
feasible.

2. Local Assignment: The local spare node of every
faulty cluster is assigned to a faulty node within the
cluster. If all faulty nodes are covered, the ECKT is
reconfigured.

3. Nonlocal Assignment: To find a set of candidate
spare nodes that can be assigned to a faulty node, we
utilize Lee’s path-finding algorithm [13]. The algo-
rithm begins by constructing a breadth-first search of
minimum depth d (1 ≤ d ≤ 2(ls − 1)) in the spare
tree from the local spare node of a faulty cluster with
a nonzero CR. If a free spare node is found, a path is
formed to the source node. The algorithm guarantees
that a path to a spare node will be found if one exists
and that the path will be the shortest possible [13].
Therefore, all faulty nodes that are one link away from
available spare nodes (at depth 1) are assigned first.
Once a path is formed, the links associated with that
path are deleted from the spare tree, resulting in a new
structure. If there still remain some uncovered faulty
nodes, a solvability test to check the CR of neighbour-
ing spare nodes, similar to Early Abort, is performed
on the new structure, and Step 3 is repeated for a
higher depth d. Reconfiguration fails if d > 2(ls − 1),
which is the longest acyclic path in the spare tree.
QED
Alloc-Spare may be applied distributively. Step 1 can

be performed by having each spare node check its own
node degree as dictated by Theorem 2 and broadcast that
information along with its CR to its neighbouring spare
nodes. Each spare node consequently checks for solvability
based on Theorem 1. Step 2 is done by the local spare
node of each faulty cluster. For Step 3, each spare node
with a nonzero CR makes a breadth-first search within the
spare tree to locate the unassigned spare node(s).

We implemented algorithm Alloc-Spare for an en-
hanced cluster 3-ary tree with l = 9 and lc = 3. Hence,
757 spare nodes are interconnected as a 27-ary spare tree
with ls = 3.

Figure 8. Tolerating faulty nodes only.

The simulation result for up to 400 randomly placed
faulty nodes is shown in Fig. 8. One thousand simulation
runs were performed for each given number of faulty nodes.
The other plot in the figure pertains to the result of the
local reconfiguration scheme [8–11]. The result indicates
nearly 100% reconfigurability for the ECKT in the presence
of about 30 faulty nodes and nearly 90% reconfigurability
in the presence of nearly 100 faulty nodes. The approaches
in [7] and [6] perform slightly worse and slightly better than
the local reconfiguration scheme, respectively. Finally, the
approach proposed in [4] tolerates only two faulty nodes,
and the scheme in [5] tolerates a fixed number of faulty
nodes at the expense of a large node degree.

Figure 9. Reconfigurability of ECT under different node
degree and cluster size.

To examine the effect of node degree and cluster size
on the fault tolerance of the ECKT, the reconfigurability
of three ECKT’s were compared. Their simulation results
are shown in Fig. 9. The three plots in Fig. 9 belong to
three ECKT’s with G1:{k = 3, l = 9, lc = 3, ks = 27,
ls = 3}; G2: {k = 2, l = 12, lc = 4, ks = 16, ls = 3};
and G3: {k = 2, l = 16, lc = 4, ks = 16, ls = 4}. Our
simulation results reveal that for a given ECKT, the best
reconfiguration is achieved when the degree of the spare
tree (ks = klc) and the spare tree levels (ls = l

lc
) are kept

to a minimum. However, the former requires lc to be
the minimum and the latter needs it to be the maximum.
Hence, for a given ECKT, lc should be selected such that
there is a balance.

4.2 Reconfiguration under Faulty Links and Nodes

If two or more faulty links share a regular node in an
ECKT, the reconfiguration fails because the spare link
connecting the local spare node to the common node has to
be shared by more than one dedicated path. For example,
in Fig. 7, if links P(2, 0) →P(3, 0) and P(2, 0) →P(3, 1)
are faulty, the spare link P(2, 0) →S(0, 0) has to be used
by both of them, which is not possible. Therefore, no
theoretical lower bounds on the number of tolerated faulty
links can be established; only experimental results based
on random distribution of faulty links can be examined.

Our reconfiguration algorithm, called the Minimum
Parallel Path, utilizes unassigned spare links to establish
a parallel path to each faulty link; if any one of the spare
links of a parallel path to any faulty link is unavailable,
the reconfiguration fails. We implemented the algorithm
for an enhanced cluster 3-ary tree with l = 9 and lc = 3.
The simulation result for up to 200 randomly placed faulty
links is shown in Fig. 10. The result indicates that the
given ECKT can tolerate nearly 20 faulty links 90% of the
time.

Figure 10. Tolerating link failures only.

Combining the reconfiguration algorithm, which toler-

5

ates faulty nodes and faulty links, allows a combination of
faulty nodes and faulty links to be tolerated. We assumed
the probability of a link failure to be the same as a node
failure. After randomly allocating the faulty elements, the
algorithm first tries to tolerate all faulty links. If successful,
it then uses Alloc-Spare to tolerate the faulty nodes. The
simulation result for an enhanced cluster 3-ary tree with
l = 9 and lc = 3 is shown in Fig. 11. The result indicates
that nearly 50 faulty elements are tolerated by the ECKT
90% of the time.

Figure 11. Tolerating faulty nodes and links.

5. Conclusion

We have presented a strongly fault-tolerant design for the
k-ary tree multiprocessor and examined its reconfigurabil-
ity. Our scheme can tolerate both faulty nodes and faulty
links without the need to alter the communication or com-
putation algorithms. Although our scheme cannot guaran-
tee a theoretical lower bound on the number of tolerated
faulty nodes or faulty links, our simulation results, under
random distribution of faulty nodes and faulty links, indi-
cates that the ECKT could tolerate a relatively large num-
ber of faulty nodes and faulty links. Compared to other
proposed schemes, the ECKT can tolerate significantly
more faults for the same overhead.

References

[1] E. John, F. Hudson, & L. John, Hybrid tree: A scalable
optoelectronic interconnection network for parallel computing,
Proc. 31st Int. Conf. on System Sciences, 7, 1998, 466–474.

[2] N. Tzeng, A cube-connected cycles architecture with high relia-
bility and improved performance, IEEE Trans. on Computers,
42(2), 1993, 246–253.

[3] J.P. Hayes, A graphmodel for fault-tolerant computing systems,
IEEE Trans. on Computers, C-25(9), 1976, 875–884.

[4] C.L. Kwan & S. Toida, An optimal 2-FT realization of binary
symmetric hierarchical tree systems, Networks, 12(12), 1982,
231–239.

[5] S. Dutt & J. Hayes, On designing and reconfiguring k-fault-
tolerant tree architectures, IEEE Trans. on Computers, 39(4),
1990, 490–503.

[6] M.B. Lowrie & W.K. Fuchs, Reconfigurable tree architecture
using subtree oriented fault tolerance, IEEE Trans. on Com-
puters, C-36(10), 1987, 1172–1182.

[7] C. Raghavendra, A. Avizienis, & M.D. Ercegovac, Fault toler-
ance in binary tree architectures, IEEE Trans. on Computers,
C-33(6), 1984, 568–572.

[8] A.S. Hassan & V.K. Agarwal, A fault-tolerant modular archi-
tecture for binary trees, IEEE Trans. on Computers, C-35(4),
1986, 356–361.

[9] A.D. Singh, A reconfigurable modular fault tolerant binary
tree architecture, Proc. IEEE Int. Symp. on Fault Tolerant
Computing, 1987, 298–304.

[10] Y. Chen & S.J. Upadhyaya, Reliability, reconfiguration, and
spare allocation issues in binary-tree architectures based on
multiple-level redundancy, IEEE Trans. on Computers, 42(18),
1993, 713–723.

[11] B. Izadi, Design of fault-tolerant distributed memory multipro-
cessors, doctoral diss., Ohio State University, 1995.

[12] C.J. Colbourn, The combinatorics of network reliability (Ox-
ford: Oxford University Press, 1987).

[13] C.Y. Lee, An algorithm for path connection and its applications,
IRE Trans. on Electronic Computers, EC-10, 1961, 346–365.

Biographies

Baback Izadi received aB.Sc. de-
gree in electrical engineering from
Oklahoma State University, Still-
water, and the M.Sc. and Ph.D.
degrees in electrical engineering
from The Ohio State University,
Columbus. Since 1998, he has
been an assistant professor in the
department of electrical and com-
puter engineering at State Uni-
versity of New York–New Paltz.
Prior to that he was on the faculty

of Devry Institute of Technology, Columbus, Ohio. Dr.
Izadi’s current research interests are fault-tolerant parallel
computer architectures, parallel and distributed comput-
ing, and real-time parallel computing. He is a member of
the IEEE and the IEEE Computer Society.

Fusun Özgüner received the
M.Sc. degree in electrical engi-
neering from the Istanbul Tech-
nical University in 1972, and the
Ph.D. degree in electrical engi-
neering from the University of
Illinois, Urbana-Champaign, in
1975. She worked at the I.B.M.
T.J.WatsonResearchCenterwith
the Design Automation group for
one year and joined the faculty
at the Department of Electrical

Engineering, Istanbul Technical University in 1976. Since
January 1981 she has been with The Ohio State University,
where she is presently a Professor of Electrical Engineering.
She also serves as the Director for Research Computing at
the Office of the Chief Information Officer. Her current
research interests are parallel and fault-tolerant archi-
tectures, heterogeneous computing, reconfiguration and
communication in parallel architectures, real-time parallel
computing and parallel algorithm design. Dr. Özgüner
has served as an associate editor of the IEEE Transac-
tions on Computers and on program committees of several
international conferences.

6

