
Energy Aware Scheduling for DAG Structured Applications on Heterogeneous and
DVS Enabled Processors

Venkateswaran Shekar and Baback Izadi

Dept. of Electrical and Computer Engineering

State University of New York at New Paltz

New Paltz, NY, 12561

bai@engr.newpaltz.edu

Abstract-The trend towards ever more powerful and faster
processors has led to an enormous increase in power consump
tion. This paper focuses on scheduling tasks in a heterogeneous
environment with DVS enabled processors to minimize both
execution time and energy consumed. The proposed algorithm,
called Energy-Dynamic Level Scheduling (EDLS), favors low
energy consuming processors by introducing a cost factor that
affects scheduling decisions. Our scheme allows for trade offs
between energy consumption and the desired performance.
Our simulation results exhibit significant power savings at a
reasonable increase in overall execution time. Moreover, our
results demonstrates a high degree of correlation between
the energy saving and the increase in the heterogeneity of
processors.

Keywords-Energy Aware; Heterogeneous Computing; DVS;
Scheduling; DAG;

I. INTRODUCTION

Today's data centers are hardly scalable. They are simply

too large and consume too much power. They have huge
footprint and consume several megawatts (MW) of power;

One megawatt costs about one million dollars per year.

Several studies have revealed that improving energy and
power efficiency is the most formidable challenge facing the

development of new data centers and exaflop mUltiprocessor
systems[I]. Conceiving and building such systems requires

reducing power by three order of magnitude and therefore

pose technical challenges at all levels of the computing
stack, including circuits, architecture, software systems, and

applications. Among the schemes that researchers have ex

amined to control power are processor throttling also known
as Dynamic Voltage Scaling (DVS). A processor typically

consumes from third to half of the node's total power [2].
Today's modern processors have the ability to operate at

different voltages and switch between them dynamically.

Consequently, Dynamic Voltage Scaling technologies such
as Intel SpeedStep and AMD PowerNOW! has provided

reduced power consumption and prolonged battery life for

laptops and handheld devices.
In this paper, we consider schemes aim at reducing

dynamic power of a processor. Total power consumed by
a processor is the sum of the static and dynamic power

978-1-4244-7614-51101$26.00 ©2010 IEEE

dissipation. The processor's dynamic Power is given by[3]

P = CeJ x vld X f (1)

where CeJ is the effective switching capacitance, Vdd is the
supply voltage and f is the processor clock frequency. The

processor clock frequency is linearly related to the supply

voltage f = k X (Vdd - VtY /Vdd, where k is a constant and
VIc is the threshold voltage. Hence, the energy consumed by
a processor to execute task Ti is Ei = CeJ x Vld X CYi,
where CYi is the number of cycles required to execute the
task. Since decreasing the processor speed correlates linearly

with decreasing the voltage supply, it reduces the power
consumed cubically and energy quadratically, but at the cost

of linearly increasing the task's latency.
Task scheduling to meet performance parameters such

as time and power is an NP-Complete problem[4]. There

fore, many heuristics have been developed for real-time
scheduling algorithms [5], [6], [7], [8]. Scheduling tasks in

a heterogeneous environment presents additional constraints

due to different performance and energy management char
acteristics of different processors and cores. On the up side,

a heterogeneous computing environment does provide a sig

nificant opportunity to meet today's mandated performance
and power requirements. Therefore, researchers [9], [10]

have explored energy-efficient scheduling for heterogeneous
systems. Unfortunately, these algorithms mainly focus on

minimizing the energy consumption, while the execution

time becomes secondary.
Our scheme is an extension of Sih and Lee's [11] earlier

scheduling algorithm called the Dynamic Level Scheduling

(DLS) algorithm. The DLS algorithm is shown especially
effective when selecting the task and processor at the same

time [11]. A number of researchers have implemented vari
ation of the DLS algorithm [12], [13]. Our scheme, called

the Energy Dynamic Level Scheduling (EDLS), utilizes both

time and energy to make scheduling decision. The resultant
energy saving can have some adverse effect on the overall

execution time. However, our scheme does provide a control
to tradeoff between the execution time and energy saving.

The rest of the paper is organized as follows. Notation
and definitions are given in the next section. In Section III,

we review the DLS algorithm through an example case.

Section IV and V describe the EDLS and Measured EDLS
schemes, and show the relationship between energy con
sumption and the scheduling of tasks. In Section VI, we

outline and analyze our experimental results. Finally, con
cluding remarks are given in Section VII.

II. NOTATION AND DEFINITIONS

We make the following assumptions. Applications have
DAG form and are periodic. Moreover, the system consists

of a network of interconnected heterogeneous processors.

These processors run at a single speed throughout the
application. Figure 1 shows a typical DAG application

G = (T, E), where each node represents a task Ti E T and
each weighted directed edges Eij = (Ti, Tj) E E represents

precedence execution and communication between tasks Ti
and Tj. The computing environment consists of a pool of
heterogeneous processors P = {Pl, P2, P3, , Pn}, with

the ability to run at different discrete speeds. For example,

processor Pi can run at speeds SPi = {SI, S2, 'Sn}'
where SI is the fastest speed and Sn is the slowest speed.

We note Px@Sy as processor x running at speed y.

1.97 (TO) 1.94
T1 , ..)TO� 1.93 1.93 1.96

.. � ...

(n) (T7) (�) (T6)
,.. 2.18 2.04 1 as/
�

(:4)
..

(�9') (Ta ')
Figure 1. Directed acyclic graph of test case

III. DLS ALGORITHM

The Dynamic Level Scheduling Algorithm (DLS) is de

veloped by Sih and Lee [11]. For the sake of completion,

in this section, we briefly describe it through an example
case. Figure 1 illustrates a DAG with 10 tasks labeled

To to Tg with their dependencies. Let's consider a pool

of 3 processors P = {PI, P2, P3}, where the speeds are

SPI = {Sd and SP2 = {SI, S2} and SP3 = {SI, S2, S3},
respectively. The relative speed-power characteristics of
these processors are as depicted in Figure 2. Our power and

speed models for different processors is rather simple, but

effective. In fact, we are not interested in accurate simu
lations of the real consumed power or execution time, but

rather, in a comparative analysis among different algorithms.

Since decreasing the processor speed correlates linearly with
decreasing the voltage supply, from Equation 1, it follows

that power consumed is cubically correlated with the speed
of the processor. Hence, the values of the execution time

and the consumed power of tasks on each processor can be

represented using Equation 2.
1

P ex - (2)
t3

Subsequently, for our example in Figure 2, we have chosen

a family of processors with three power settings, consistent
with the existing technology [14]. Moreover, we have chosen

the typical execution of tasks within the fastest processor to

be about 10 ms. Using Equation 2, we can estimate the
execution of the processors at different power setting by

noting that:
PI t2

3
-ex
P2 t1

3 (3)

Note that, P3@S3, P2@S2, and Pl@SI are given similar

execution time and power characteristics. Likewise, P3@S2
and P2@SI have similar characteristics, but faster execution

time (lower power consumption) than the first group. Finally,

P3@SI is chosen as the fastest and therefore least power
efficient processor.

The execution time and consumed power for each of the
10 tasks of Figure 1 for Processors 1, 2 and 3 are based

on the nominal values of Figure 2. Individual values of the

tasks have been randomized within ±10% of the nominal
values, and are specified in Tables I and II, respectively.

Execution Time

17 ms 12 ms 10 ms

Available Available

Processors Speeds

P1 S1

P2 S2 S 1

P3 S3 S2 S1

-- --
5W 15W 25W

Power

Figure 2. Processor Pool

Table I
DETAILS OF PROCESSOR 1 AND PROCESSOR 2

Processor I Processor 2

Task \Exec Timf Power \Exec Timf Power [Exec Timf Power
Numbe @Sl(ms) @Sl(W) @Sl(ms) @Sl(W) @S2(ms) @S2(W)

0 15.74 4.63 Il.ll 13.89 15.59 4.58
I 15.95 4.69 11.25 14.06 15.63 4.59
2 16.89 4.96 12.10 15.13 17.06 5.02
3 16.2 4.76 11.44 14.31 16.01 4.71
4 17.53 5.15 12.43 15.54 17.56 5.16
5 15.76 4.63 11.03 13.78 15.90 4.67
6 16.29 4.79 11.41 14.26 16.20 4.76
7 15.71 4.62 11.21 14.02 15.80 4.64
8 16.68 4.90 11.58 14.47 16.75 4.92
9 17.4 5.11 12.19 15.24 17.20 5.05

The DLS algorithm is designed to schedule a DAG onto
a set of heterogeneous processors in order to minimize the
execution time of the application. The algorithm considers

Table II
DETAILS OF PROCESSOR 3

Task Exec Time Power Exec Time Power Exec Time Power
Numbe @Sl(ms) @Sl(W @S2(ms) @S2(W @S3(ms) @S3(W

0 9.26 24.26 11.01 13.76 15.79 4.64
1 9.2 24.2 11.01 13.76 15.9 4.68
2 10.05 25.05 12.12 15.15 16.97 4.99
3 9.54 24.54 11.41 14.27 15.97 4.7
4 10.33 25.33 12.4 15.5 17.5 5.15
5 9.36 24.36 11.22 14.03 15.81 4.65
6 9.39 24.39 11.51 14.39 16.08 4.73
7 9.2 24.2 11.1 13.88 15.81 4.65
8 9.78 24.78 11.73 14.66 16.75 4.93
9 10.2 25.2 12.39 15.49 17.53 5.16

the execution time of the tasks as well as the interprocessor
communication overhead, while mapping the tasks onto the

processors. The algorithm determines when it is appropriate

to make matching and scheduling decisions and not when to
schedule a particular task. There are many processor-speed

combinations that one can choose from. In this example,

let's consider P1@Sl, P2@Sl, P3@Sl. In other words all
three processors are run at maximum speed throughout the

application.

At each scheduling step, the DLS algorithm chooses the
next task to schedule and the processor on which the task

is to be executed. This is done by finding the Ready Task
and processor pair that have the highest cost function, called

Dynamic Level, and specified by Equation 4.

DLnp = SLnp - max(DAnp, TFnp) + �

DLnp = Dynamic Level of Task n on Processor p

SLnp = Static Level of a task n on Processor p

D Anp = Data Ready time n on Processor p

T Fnp = Processor Ready time n on Processor p

� = Processor speed difference

(4)

All the terms in Equation 4 are expressed in time units.

DL represents how well the task and processor are matched.
SL is the largest sum of the execution times along a directed

path for a task Ti to an end task over all end tasks. SL gives
priority to tasks that are farther away from the end task(s).
DA is the earliest time that all the data required by a task is

available at the processor and TF represents the time that the
last task assigned to the processor finishes execution. The

maximum term between DA and TF is chosen so the task

which takes longer time to be ready is penalized. Finally,

� accounts for the speed difference between the processors,

allowing the processors with higher � to process the task

faster.
As the first step of the DLS Algorithm, the Static

Level is calculated based on the median execution time
of tasks among different processors. For example, from

Tables I and II, the median execution time of Tl =

Median(15.95, 1 1.25, 9.2) = 1 1.25, as specified in Ta
ble III. Now, let's consider Task 1 in Figure 1. The three

possible paths to the end tasks and the sum of their median

execution time are

Tl � T2 � T4 =} 1 1.25 + 12.1 + 12.44 = 35.79ms
Tl � T7 � Ts =} 1 1.25 + 1 1.22 + 1 1.58 = 34.05ms
Tl � T7 � Tg =} 1 1.25 + 1 1.22 + 12.195 = 34.665ms

The DLS picks the path with the largest value (35.79ms)
and assigns it as the Static Level of Task 1. Similarly, Static

Level of other tasks are calculated and the result is tabulated

in Table III.

Table III
STATIC LEVEL TABLE

Task Number Median Times Static Level
0 11.11 46.90
1 11.25 35.79
2 12.1 24.537
3 11.44 22.85
4 12.43 12.43
5 11.03 11.03
6 11.41 11.41
7 11.21 23.41
8 11.58 11.58
9 12.19 12.19

In the beginning, the only Ready Task is Task 0 and all

three processors are available for execution. This implies
that the Processor Ready Time (TF) and Data Ready Time

(DA) are zero. The DLS picks the task-processor pair with
the highest Dynamic Level. The Dynamic Levels for Task

o and three processors are calculated using Equation 4 and

the results are shown in Table IV. From the table, Task 0

Table IV
STEP I OF DLS ALGORITHM

Task I SL I DA I TF I Ll I
Processor 1

0 I 46.90 I 0.0 I 0.0 I -4.63 I
Processor 2

0 I 46.90 I 0.0 I 0.0 I 0.0 I
Processor 3

DL

42.27

46.90

0 I 46.90 I 0.0 I 0.0 I 1.85 I 48.75 �

has the highest Dynamic Level value for Processor 3, and
therefore, Task 0 is assigned to Processor 3.

Following Task 0, per Figure 1, Task 1 and Task 3 are
ready to be scheduled. Processor Ready Time (TF) for

Processors 1 and 2 are 0 since no task was assigned to them

in the previous step. The Data Ready Time (DA) for Task

1 on either Processors 1 and 2 is 9.26 + 1.97 = 11.23 ms,

where 9.26 ms is the execution time for Task 0 on Processor

3, from the previous scheduling step, and 1.97 ms is the
communication overhead between Tasks 0 and 1. Similarly,

DA for Task 3 for either Processors 1 and 2 is 9.54 + 1.94
= 11.48 ms. For Processor 3, both TF and DA are 9.26 ms

since there is no communication overhead if tasks remain in

the same processor. The result of Step 2 is shown in Table
V. Hence, Task 1 is assigned to Processor 3.

By repeating the process, the rest of the tasks are assigned

to the processors, as shown in Figure 3. The total energy

Table V
STEP 2 OF DLS ALGORITHM

Task I SL I DA I TF I � I DL

1
3

1
3

1
3

Processor 1

I 35.79 1 11.23 I 0.0 I -4.69 I 22.85 11.48 0.0 -4.75

Processor 2

I 35.79 1 11.23 I 0.0 I 0.0 I 22.85 11.48 0.0 0.0

Processor 3

19.86
6.90

24.56
11.65

I 35.79 I 22.85
9.26 I 9.26 I 2.06 I 28.59 '*'"

9.26 9.26 1.90 15.50

Processor 1

Processor 2

Processor 3

Execution
Time

Figure 3. Scheduling using DLS algorithm

consumed is 2.092 Joules, which is determined by adding

the consumed energy of individual scheduled task-processor

pairs, as specified by Tables I and II. From Figure 3, all
tasks are assigned to processors 2 and 3. This is because the

DLS algorithm favors the task-processor pairs with shortest
execution time and Processor I is a slower (albeit more

energy efficient) processor per Figure 2.

IV. EDLS ALGORITHM

In this section, we present an energy-efficient DLS al

gorithm (EDLS). This is done by modifying the DL cost

function to favor processors with low-power capability.
Hence, we introduce a new Energy Dynamic Level (EDL)

for Task n on Processor p.

EDLnp = DLnp + DLnp x (1 - D:np) (5)

DLnp = SLnp - max(DAnp , TFnp) + �np (6)

The second term in Equation 5 is added to favor scheduling

tasks on processors with lower energy consumption. Specif

ically,

Task n Energy on Processor p
D:np =

Max Energy by task n over all processors

Note that D:np, for the task-processor pair with the highest

consumed energy, would be 1, resulting in EDL = DL.
Other task-processor pairs, with lower consumed energy,

result in D:np < 1. Subsequently, the lower value of D: would
correspond to a proportional higher value of EDL than DL.

The EDLS scheduling algorithm is specified as follows.

Algorithm 1 (EDLS)

Calculate Static Level and � for every task

while :3 unscheduled task do

Make list of Ready Tasks
Calculate D: for these tasks
Calculate EDL value for Ready Tasks using Equation

5
Schedule task-processor pair with the highest EDL
Mark assigned task as scheduled
Calculate DA and TF for next Ready Tasks

end while

Example: Let's reconsider the example in prior section.

The task that is initially ready for execution is still Task
O. If Task 0 is to be executed by Processor I, per Table I,

the resulting energy consumption is 15.74 ms x 4.63 W

= 72.87 mJ. Similarly, the energy consumed for Task 0
by Processors 2 and 3 are 154.32 mJ and 224.65 mJ,

respectively. Hence, D: for processor 1 is 272
248:5 = 0.32.

Similarly, D: for Processors 2, and 3 become 0.68 and 1.0,

respectively. Consequently, the values of the second term in

Equation 5 (DLnp x (1 - D:np)) become 45.81, 0 and 5.38
for Processors 1, 2, and 3, respectively. Moreover, the EDL
values for Task 0 and Processors 1, 2, and 3 become 70.81,

61.58 and 48.75, respectively. The results for Step 1 of the
EDLS algorithm are given in Table VI. Accordingly, Task 0

has the highest EDL for processor 1, and therefore is assign

to it.

Table VI
STEP I OF EDLS ALGORITHM

Task I SL I DA I TF I � I ex I EDL
Processor 1

0 I 46.90 I 0.0 I 0.0 I -4.63 I 0.32 I 70.82 '*'"

Processor 2

0 I 46.90 I 0.0 I 0.0 I 0.0 I 0.69 I 61.58

Processor 3

0 I 46.90 I 0.0 I 0.0 I 1.85 I 1.0 I 48.75

During the second step, Tasks 1 and 3 are ready for

execution. The resulting values for elements of Equations 5

is tabulated in Table VII. Accordingly, EDLll is the max
imum and therefore Task 1 is assigned to Processor 1.

Table VII
STEP 2 OF EDLS ALGORITHM

Task I SL I DA I TF I � I ex I EDL

1
3

1
3

1
3

Processor 1

I 35.79 1 15.74 1 15.74 I -4.69 I 0.33 I 25.53 '*'"

22.86 15.74 15.74 -4.75 0.33 3.95

Processor 1

I 35.79 1 17.71 I 0.0 I 0.0
22.86 17.68 0.0 0.0 I 0.71 I 0.70

Processor 2

I 35.79 1 17.71 I 0.0 I 2.06 I 22.86 17.68 0.0 l.9
1.0 I 1.0

23.28
6.73

20.14
7.08

Similar tables are easily generated for the subsequent

steps to determine processor-task pair combinations. Figure
4 shows the resulting scheduling diagram for our example.
The total energy consumed is the sum of consumed energy

Execution
Time!

Processor 1

Processor 2

Processor 3

o

TO

15.74 31.69

Tl T2

48.58 66.11 81.87

T4 T5

•••
II

Figure 4. Scheduling using EDLS

of individual scheduled task-processor pairs by the EDLS
algorithm, which would be 1.3 1. This amounts to about

34.51 % energy saving compared to the DLS algorithm. The

tradeoff comes in the increased execution time. In this case,

the overall execution time is increased by about 29.67%,

which is due to the assignment of tasks onto slower, but
more energy efficient Processor 1.

So far, we have only considered Pl@Sl, P2@Sl and

P3@SI. However, in our example SPI = {Sd and SP2 =

{SI, S2} and SP3 = {SI, S2, S3}. Hence, sixteen other
processor-speed combinations exists. To get a general sense

of energy versus execution delay characteristics, we repeat
edly applied the EDLS algorithm to other processor-speed

combinations. Table VIII compares the consumed energy for
the DLS and EDLS algorithms for all seventeen processor

speed combinations. This includes cases where one pro
cessor is shut down (noted as speed 0 in the table). The
table does not include the cases where only one processor

is active, as this would lead to the same scheduling for both

the DLS and the EDLS algorithms.
The right two columns of Table VIII indicate the resulting

percent energy saving and percent slowdown in execution
time, when scheduling Figure 1 tasks using the EDLS

algorithm versus the DLS algorithm for each combination

of processor and speed. For better illustration, the tabulated
result is also depicted in Figure 5.

Clearly, in most cases, the extra energy saving is accom

panied with added execution time. However, the amount of
extra execution time varies and depends on the combination

of processors and speed. For example, by simply switching
P2@SI to P2@S2, the energy saving is increased to about
45% (Case 4) for about the similar execution slow down

as before (Case 1). On the otherhand, switching to P3@S2
(Case 2) can reduce the execution time penalty by half at

the cost of modestly reducing the energy saving. Hence, the

right combination of processors and speed is important in
meeting the budgeted load and performance demands.

Our results indicate that higher heterogeneity of proces-

Table VIII
COMPARISON OF ENERGY CONSUMED BY DLS AND EDLS

ALGORITHMS

Case Proc1 Proc2 Proc3 DLS(J) EDLS(J) % Energy % Slowdown
Number Speed Speed Speed Saving

1 1 1 1 2.09 1.37 34.53 29.67
2 1 1 2 1.68 1.23 26.46 15.05
3 1 1 3 1.32 0.96 27.16 15.1
4 1 2 1 1.74 0.95 45.5 30.24
5 1 2 2 1.33 0.88 33.96 15.85
6 1 2 3 0.79 0.78 1.57 -3.1
7 1 1 0 1.33 1.15 13.51 29.46
8 1 2 0 0.78 0.78 0 0
9 1 0 1 1.91 1.42 25.7 30.99

10 1 0 2 1.42 1.15 18.9 17.49
11 1 0 3 0.79 0.79 0 0
12 0 1 1 2.09 1.95 6.72 17.16
13 0 1 2 1.68 1.68 0 0
14 0 1 3 1.32 1.14 14.1 29.2
15 0 2 1 1.89 1.41 25.41 30.31
16 0 2 2 1.33 1.14 14.36 27.91
17 0 2 3 0.78 0.78 0 0

2.5

�
1,·5

I I
I

III I II
.DLS

� 1 • EDlS f
0.5

1 2 3 4 5 6 7 8 9 10 l' 12 13 14 15 16 17
Case NIMTlbef"

(a) Energy consumed
120

100

eo i

I
>= 60

_EDLS � .OLS .ll 40

20

0 , 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
CaseNu�

(b) Execution time

Figure 5. Comparison of DLS and EDLS

sors correlates with higher energy saving. For combinations

which are slightly homogeneous, the EDLS algorithm still
outperforms the DLS algorithm; the EDLS algorithm saves

some energy and finishes the application slightly faster than

the DLS algorithm. Case 6 is such an example, where all
three processors are running at their most energy efficient
mode. In this case, the EDLS algorithm attains nearly 1.5%
energy saving while at the same time reducing the overall
execution time by 3.1 %. Hence, the EDLS algorithm is very

effective and outperforms the DLS algorithm in both the
homogenous and heterogeneous environments .

V. MEA SURED EDLS

As the result of our last section demonstrated, often

there is a tradeoff between saving energy and execution

delay of tasks. Moreover, during certain computing periods,
environmental condition or computing demand may change

and adjustment may be required to accept less energy

saving in favor of a faster execution delay or vice versa.
To accommodate this, we introduce an operator controlled

variable 0 ::; , ::; 1 and modify Equation 5,

EDLnp = DLnp + , x (DLnp x (1 - CYnp)) (7)

Subsequently, we call the resulting scheme the Measured

EDLS, where the same EDLS Algorithm is used, except

instead of Equation 5, Equation 7 is used to calculate
EDL. Note that , = 0 results in the DLS algorithm, and

, = 1 would implement the EDLS algorithm. Hence, for a
higher value of " the algorithm favors more energy efficient
processors at the likely expense of higher computation time

and vice versa.
To compare the performance of the Measured EDLS

algorithm under varied " we re-examined our prior example
and compared the cases under, = 0, 0.5, and 1. The result,
as depicted in Figure 6, shows that although the effectiveness

of, varies from case to case, in about 65% of cases, the
energy saving under , = .5 is comparable to the EDLS

(, = 1). Moreover, in these cases, there is no additional

execution time penalty beyond, = 0.5.
2.'

ti
d
'"

I
.§
!

0.'

I I I

Ihhillil
1 2 3 4 5 6 7 8 8 10 11 12 13

CeseNumbar

(a) Energy Consumed

•

II I
14 15 16 17

1 2 3 4 5 6 7 8 I:) 10 11 12 13 14 15 16 17

(b) Execution Time

Figure 6. Performance of EDLS under different I

Value of
y
.0

0.5
. ,

Value of
y
.0
1 00

So far, our results demonstrate that both proper proces

sors - speed combination and appropriate value for , are
needed to create an appropriate computing environment,

which would match the budgeted energy and performance
demands. For a better insight, we next examine the ef

fectiveness of the Measured EDLS example case under a
wide range of , (0 ::; , ::; 2). Note that cases with

, > 1 are added to examine the capacity of the Measured
EDLS in attaining even higher energy saving. The results

are depicted in Figure 7. Accordingly, our result demonstrate

that the effectiveness of, varies from case to case. However,
based on Figure 7(a), about 40% of the cases, the energy

saving attained by , = 0.4 is comparable to the , = 1.

For 0.5 ::; , ::; 1.1, to a lesser degree, additional energy
saving is achieved. Further changes in , has little effect in

the overall energy saving. As for the execution time, our
result indicates that, in general, there is initially either no

additional execution penalty or a reduction in the overall

execution time. Moreover, in about 70% of the cases, there
is no additional execution delay for, > 0.4 cases. Finally,

in all cases, there is no additional execution penalty for

, � 1 cases. Hence, the controlled operator " when
used appropriately with processors - speed combination is

beneficial in optimizing the energy usage while minimizing
the execution penalty.

Case
Number 2.1 �'-----:::--_____________ ::: ;

1.9 J� "-'\
.. _!

i :: ��;�:��\::�:::£:�,:::,�-:,�::,::: �t
- -14

�7 15

-1.

0.5 -17

o 0.10.20,30.40.50,60.70,80,9 1 1.1 1,21.31.4 '1.5 1.6 1.7 1,6 1.9 2

V.lue� Y

(a) Energy Consumed
120

"0

I 90

j so t--M;;r===-1='JE':.::

70 �:fn�
_

-+7--------------�
15

-16

50 -17
o 0.10.20.30.41 0.5 0.6 0.7 0.8 0.9 1 1.11.21.31.4 1.51.61.71.81.9 2

Value of Y

(b) Execution Time

Figure 7. Performance of EDLS by varying I

VI. SIMULATION RESULTS

The result of our prior examples, while promising, rep

resent scheduling a small task graph of Figure 1 on three

processors. In this section, our JAVA-based simulator uti
lizes Task Graphs For Free (TGFF) [15] to examine the

performance of the EDLS algorithm under large randomly
generated task graphs with varying execution time and power

consumption. Our first case involves randomly generated

100 task DAG's that are to be scheduled onto a pool of five
processors P = {Pl, P2, P3, P4, P5}, where SPl = {Sd,
SP2 = {Sl, S2}, SP3 = {Sl, S2, S3}, SP4 = {Sl, S2, S3}
and SP5 = {Sl, S2, S3}. The relative speed-power charac
teristics of Pl,P2, and P3 are kept as before (Figure 2),
while P4 and P5 are designated as more high performance

processors, as depicted in Figure 8. Therefore, we used our

Execution Time

10 ms 9 ms 7ms
..

Available Available

Processors 5peeds

P4 53 52 51

P5 53 52 51

--- ----

12W 20W 40W

POWAr

Figure 8. Processor Pool

prior procedure to establish power and speed parameters for

Processors 4 and 5 as well. Moreover, we have randomized
the execution time and consumed power of each of the 100

tasks for a given speed of a processor using the base values

from Figures 2 and 8 with ±1O% variation. For example,
the execution times for all the tasks on Processor 4 at speed

3 is randomized within the range of 10 ± 1.1 ms and the

corresponding consumed power is randomized within the
range of 12 ± 1.2 W.

For the given processor pool, there are 371 possible speed
processor combinations, ranging from 2 to 5 processors and

running at different speeds. For each case, our simulation

algorithm picks a random DAG of 100 tasks and apply
them to the DLS and the EDLS algorithms. To reduce the
clutter, we have randomly selected the simulation results of

a block of 100 (out of the 371 combinations), and displayed
them in Figure 9. The result replicates our findings in

our earlier example. Namely, different processors - speed
combinations exhibit different power saving and execution

penalty characteristic. However, the larger pool of processors

and a larger number of tasks seem to result in a higher
percentage of energy saving. In fact, in some cases, up to
70% energy saving is attained. Compared to the example

case, the percent execution time overhead also seem to have
increased, however, to a lesser degree. As before, large

energy saving is predominate in cases where the speed
difference between the processors is more prominent.

We next repeated our simulations by varying the value

of 0 :::; 'Y :::; 2. Five randomly selected cases were picked,
as shown in Figure 10. The results demonstrate that 'Y is

more effective with larger DAG's and additional processors.

Moreover, the majority of the energy saving can be attained
with 'Y < .4 . Within this limit, the execution penalty will

be less than 50%. Our results also reveal that 'Y > 1 has no

35

�=�==�=�=��=�=��=

=-=-=---����===�=
Case runber

(a) Energy Consumed

1.2

I 0.8

F' � 0.6

�
0.4

0.2

�=�==�=�=��===�-=

�-=-===-�=��==��=

eas. Number

(b) Execution Time

• DLS
• EDLS

• EDLS
• DLS

Figure 9. Comparison of DLS and EDLS for 100 task DAG

10
a 0.10.2030.4. 0.5 06 0.70.8 o.a 1 1.1121.31.41.5161.71.81.9 2

ValleOl Y

(a) Energy Consumed

E

�
"
�
oll

0.4

a 0.10.20.30.40.50.60.70.80.9 1 1.1 1.2 La 1.4 1.5 1.G 1.7 1.8 l.g 2

Value d 'Y

(b) Execution Time

Case
Number
-201
-202

20'
-209
-229

-201
-202

204
-209
-229

Figure 10. simulation results with variation in 'Y for 100 task DAG

effect on the performance of the EDLS algorithm.

To examine the scalability of the EDLS algorithm, we

repeated our simulations with randomly selected 200 tasks
onto the same pool of 5 processors. The 200 task DAG's

were assigned similar properties as before. The result of
five cases were randomly picked and shown in Figure 11.

E
� '"
8
;;
�

60

20
0 0.10 2030.405060.70809 1 ' 1121.31415 16171819 2

ValJQ of 'Y

(a) Energy Consumed

2.'

2.3

'.9

u

".

'.3

0.9

a 0.10.20.30.40.50.60.70.80.9 1 1.1 1.21 .3 1.41 .5 1.61.71.8 1.9 2

Valueo. y

(b) Execution Time

Case
Number

-3
-6

12
-20
-21

Case
Number

-3
-6

12
-20
-21

Figure I I . Simulation results with variation in "y for 200 task DAG

The results show consistency with our prior simulations and

indicate that the Modified EDLS is scalable as 'Y is effective
in controlling execution overhead penalty while allowing to

control the consumed energy.

VII. CONCLUSION

In this paper, we have have presented a scheme, called

the Energy Dynamic Level Scheduling (EDLS). The scheme
utilizes both time and energy to schedule tasks. The al

gorithm attains a higher energy saving by rewarding task
processor pairs which are more energy efficient. Our results

demonstrate that the EDLS algorithm can significantly im
prove the energy efficiency of a heterogeneous computing
system. Moverover, with an appropriate processors - speed

combination, the execution time penalty can be modest. In

general, we have shown that a higher heterogeneity results

in a higher energy saving, though, our EDLS algorithm
outperforms the DLS algorithm even in a homogeneous
computing environment. Our simulation results have re
vealed that the EDLS algorithm is scalable and therefore can

be effective in data centers. To control the execution penalty
that we may incur, our Modified EDLS scheme utilizes an

operator controlled variable 'Y, which adjusts the scheduling
cost function. Our results have shown that the scheme is
especially useful with larger task graphs.

REFERENCES

[1] P. M. Kogge, "The challenges of petascale architec

tures," Computing in Science and Engineering, vol. 11,
pp. 10-16, Sep./Oct. 2009.

[2] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal,

"Adaptive, transparent frequency and voltage scaling

of communication phases in mpi programs," Proc. of

the 2006 ACMIIEEE Conf. on Supercomputing, 2006.

[3] A. Chandrakasan, S. Sheng, and W. Brodersen, "Low
power cmos digital design," IEEE Journal of Solid

State Circuits, pp. 473-484, April 1992.

[4] H. Topcuouglu, S. Hariri, and M. you Wu,
"Performance-effective and low-complexity task

scheduling for heterogeneous computing," IEEE

Trans. Parallel Distrib. Syst., p. 260, 2002.
[5] D. Zhu, R. Melhem, and B. Childers, "Scheduling

with dynamic voltage/speed adjustment using slack
reclamation in multiprocessor real-time systems," Proc.

of the 22nd IEEE Real-Time Syst. Symp. (RTSS), p. 84,

2001.
[6] B. Rountree, D. K. Lowenthal, S. Funk, V. W.

Freeh, and M. Schulz, "Bounding energy consump

tion in large-scale mpi programs," Proc. of the 2007

ACMIIEEE conf. on Supercomputing, p. 1, Nov. 2007.

[7] S. Ranka and J. Kang, "Dynamic algorithms for en

ergy minimization on parallel machines," 16th Euromi

cro Conference on Parallel, Distributed and Network

Based Processing, p. 399, Feb. 2008.
[8] K. H. Kim, R. Buyya, and J. Kim, "Power aware

scheduling of bag-of-tasks applications with deadline

constraints on dvs-enabled clusters," Proceedings of

the Seventh IEEE International Symposium on Cluster

Computing and the Grid, pp. 541-548, 2007.
[9] C.M.Hung, J. Chen, and T.W.Kuo, "Energy-efficient

real time task scheduling for a dvs system with non-dvs

processing element," ACMIIEEE Conference of Design,

AUtomation and Test in Europe, 2006.

[10] 1. Luo and N. Jha, "Static and dynamic variable voltage

scaling algorithms for real time heterogeneous dis
tributed embedded systems," 15th International Con

ference on VLSI Design, pp. 719-726, 2002.
[11] G. Sih and E. Lee, "A compile-time scheduling heuris

tic for interconnection-constrained heterogeneous pro
cessor architectures," IEEE Transactions on Parallel

and Distributed Systems, pp. 175-187, 1993.

[12] M. Iverson and F. Ozguner, "Dynamic, competitive

scheduling of multiple dags in a distributed heteroge
neous environment," Seventh Heterogeneous Comput

ing Workshop, p. 70, Mar. 1998.
[13] A. Dogan and F. Ozguner, "Matching and scheduling

algorithms for minimizing execution time and failure
probability of applications in heterogeneous comput
ing," IEEE Transactions on Parallel and Distributed

Systems, vol. 13, no. 3, March 2002.

[14] List of cpu power dissipation. [Online]. Available:
http://en.wikipedia.org/wikilListofCPUpowerdissipation

[15] Task graphs for free. [Online]. Available:
http://ziyang.eecs.umich.edu! dickrp/tgff/

