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Abstract—Modern computing requires faster and more
powerful processing. Faster and more powerful processors have
resulted in higher heat dissipation and power consumption. In
this paper we present an offline algorithm called Temperature
and Energy aware Dynamic Level Scheduling (TEDLS). It is
able to schedule tasks in a heterogeneous environment with
DVS enabled processors to minimize execution time, energy
consumption and heat dissipation. We use a heat model to
estimate the final temperature of a processor executing a
task. This estimation of temperature is based on processor
characteristics, which aids in choosing the cooler processors.
Our simulation results have shown that the TEDLS algorithm
not only results in processors having lower temperatures
but also produces lower energy consumption as compared to
the previous offline algorithms. The TEDLS algorithm also
produces lower application execution time when the application
size is small.

Keywords-Heterogeneous environment; DVS; DAG; Schedul-
ing; Temperature and Energy aware; TEDLS

I. INTRODUCTION

With widespread growth of the internet, data centers
have been trying to incorporate faster and more powerful
processors to meet the high data processing requirements.
This has resulted in data centers consuming several MW’s
of power every year. Studies have shown that efforts in im-
proving energy or power efficiency has become the biggest
hurdle in developing larger data centers [1]. Processors
consume third to half of system’s total power [2]. Thus, by
lowering processor power consumption, power required by
data centers can be significantly reduced. The total power
consumed by a processor is the summation of the static and
dynamic power. Static power is technology dependent and
dynamic power [3] can be given by (1),

Pdynamic = α× Cef × V 2
dd × f (1)

Where, α is the switching activity, Cef is the effective
capacitance, Vdd is the supply voltage and f is the clock
frequency. Per (1), a decrease in supply voltage would bring
about a quadratic decrease in dynamic power. Thus, it seems
changing the supply voltage can be the most effective way of
reducing power consumption in processors. The mechanism
that allows us to achieve this is called Dynamic Voltage

Scaling (DVS), and processors with such capability are
known as DVS enabled processors. Two examples of DVS
enabled processors are Enhanced Intel SpeedStep [4] and
AMD’s Cool ’n’ Quiet [5].

Aside from high power usage, processor temperatures
should not be allowed to go beyond a critical temperature
of operation, as such a situation might cause faults in
the circuit. For example, rise in junction (device) tem-
perature causes high leakage current [6], which can ulti-
mately damage the processor circuitry. Spatial increase in
temperature can cause Elmore delay when there is inter-
processor communication [7]. Thus, when scheduling tasks
onto processors, both energy consumption and processor
temperature have to be taken into consideration alongside
application execution time. Task scheduling to minimize
execution time and energy consumption on DVS enabled
processors has already been shown to be NP-Complete
[8]. Thus, task scheduling to minimize execution time,
energy consumed and processor temperature would also
certainly be considered NP-Complete. An optimal heuristic
scheduling algorithm called the Dynamic Level Scheduling
(DLS) algorithm was proposed by Sih and Lee [9], which
schedules tasks based on fastest execution of an application.
Other researchers [10], [11], [12], [13], [14] have developed
energy-efficient scheduling algorithms for heterogeneous
processors. Shekar and Izadi [14] developed an algorithm
called the Energy Dynamic Level Scheduling (EDLS) algo-
rithm, that focuses on minimizing both application execution
time and energy consumed. Although the EDLS algorithm
focuses on minimization of both execution time and energy
consumption, it does so at times by heating up the most
energy efficient processor. This might give rise to transient
or permanent faults, making the system less reliable. Several
researchers [7], [6], [15], [16] have used thermal sensors
to obtain processor temperatures, and use the readings to
slow down or shut down overheated processors. One of the
drawbacks in their approach is the lack of emphasis on
energy usage.

Our algorithm, called the Temperature and Energy aware
Dynamic Level Scheduling (TEDLS) algorithm, is an ex-
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tension of the DLS algorithm [9]. It focuses on minimizing
energy consumption, application execution time and proces-
sor temperature. We use the heat model in [17] to predict
final temperatures of processors while running a given task.
Our algorithm schedules tasks to the most energy efficient
processor as long as it is also one of the cooler processors.

The rest of the paper is organized as follows. In Sec-
tion II, we discuss some definitions and notations. In Sec-
tion III, we explain our scheduling algorithm, called the
TEDLS algorithm. In Section IV, we illustrate scheduling of
tasks onto a pool of processors using the TEDLS algorithm
and compare simulation results for execution time, energy
consumption and processor temperatures with those while
scheduling tasks using the DLS and EDLS algorithms.
Finally, concluding remarks are given in Section V.

II. DEFINITIONS AND BACKGROUND

For simulation purposes, we assume that our applications
are periodic in nature. We also assume that applications can
be represented in a DAG structured form. Fig. 1 shows a
typical DAG application G = (T,E), where each node
represents a task Ti ∈ T . An arrow from one task to another
task indicates the dependency of tasks. If two tasks are
performed in separate processors, each weighted directed
edge Eij = (Ti, Tj) ∈ E represents the communication
delay associated with sending of task Ti to the processor
executing task Tj . For example, T0, in Fig. 1, needs to
be executed before T1. If T0 and T1 are executed on two
processors Pi and Pj , it takes 1.99 time units to transfer the
results of T0 from Pi to Pj .

1.97

1.99 1.94

1.81 1.81 1.99

2.081.992.17

Fig. 1. Example DAG

Fig. 2 shows an example of a pool of three processors
P = {P1, P2, P3}, that can be used to schedule the tasks
in Fig. 1. Here, the processor speeds are SP1 = {S1}
and SP2 = {S1, S2} and SP3 = {S1, S2, S3}. Hence,
P1 can only operate at a single frequency, and P2 and
P3 have the DVS capability of operating at two and three
different speeds, respectively. Processor speed has a linear

correlation with supply voltage f ∝ (Vdd − Vt)2/Vdd [18].
Thus, per (1), power consumed can be found to be cubically
correlated with the speed of the processor. Equation (2)
shows the relationship between power consumed and its
speed of operation.

P ∝ 1

t3
(2)

We have intentionally chosen power and speed models for
our different processors to be simple. Emphasis has been
given to the relationship between execution time and power
values, rather than exact values of both. Consistent with the
current technology [19], the processors have been chosen
to have a maximum of three power settings. It should
be noted that, P3@S3, P2@S2, and P1@S1 have similar
execution time and power characteristics. Likewise, P3@S2

and P2@S1 have similar characteristics, but faster execution
time (lower power consumption) than the first group. Finally,
P3@S1 is the fastest processor-speed combination and the
least power efficient processor.

Fig. 2. Processor Pool

When different processors execute different tasks, several
scenarios can occur. A processor that is assigned to perform
Task 1 will have to wait for Task 0 to end, so that its results
can be used to execute Task 1. The time required for data
to be available to a processor is called Data Ready Time
(DAnp). Here, n represents the task number and p the pro-
cessor number. Sometimes, certain processors might be busy
executing tasks and therefore unable to execute ready tasks.
If P1 is already executing T0, then the Processor Ready
Time (TFnp) to perform T1 would be the execution time
for T0. Static Level, denoted by SLnp, is the summation of
the execution times of tasks along the longest path. Processor
Speed Difference (∆np) is the difference in execution time
of Tn on Processor p with that of the Median Processor.

III. TEDLS ALGORITHM

In this section, we present our energy-efficient schedul-
ing algorithm, Temperature and Energy aware Dynamic
Level Scheduling (TEDLS), that also focuses on minimal
processor temperature. Given that there is a pool of hetero-
geneous processors to perform an application, this offline
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algorithm can schedule application tasks to the cooler and
more energy efficient processors with the help of the cost
function given by (3). This cost function is a modification
of the cost function for the DLS algorithm [9], as shown in
(4).

TEDLnp = DLnp +DLnp × (1−NormTemp) (3)

DLnp = SLnp −max(DAnp, TFnp) + ∆np (4)

NormTemp in (3) is used to penalize the heated processors,
and is given by (5). Its value is obtained by dividing the
predicted final temperature Tnp by a maximum operating
temperature MaxTemp (set by the manufacturer). Cooler
processors will have lower values of NormTemp, while
processors that have heated up from performing tasks will
have a higher value of NormTemp.

NormTemp =
Tnp(t2)

MaxTemp
(5)

We estimate the value of final temperature, Tnp(t2) of
Processor p after execution of task n, using the following
heat model [17] in (6). This heat model is particularly
useful because it not only reflects the increase in processor
temperature as the processor is working, but it also reflects
the cooling effect on the processor due to Newton’s law of
cooling.

Tnp(t2) =
βPnp
ρ

+ (Tnp(t1)− βPnp
ρ

) exp−ρ(t2−t1) (6)

Algorithm 1 (TEDLS)
Calculate Static Level and ∆ for every task
while ∃ unscheduled task do

Make list of Ready Tasks
Estimate Tnp(t2) for Ready Tasks on Processor p using
(6)
Calculate NormTemp using (5)
Calculate TEDL for Ready Tasks using (3)
if Tnp(t2) of processor-task pair with highest value of
TEDL != Highest Tnp(t2) then

Schedule task-processor pair with the highest TEDL
else

Schedule available task-processor pair with the next
highest TEDL

end if
Mark assigned task as scheduled
Calculate DA and TF for next Ready Tasks

end while

In this heat model, β represents the thermal resistance of
the processor; i.e. the amount of heat needed to be supplied
to raise the processor temperature by 1 K. Pnp represents
power dissipation of Processor p while executing Task n,
ρ represents the cooling constant of the processor, Tnp(t1)
represents the initial temperature of the processor and (t2−
t1) is the execution time of Task n on Processor p. Our

TEDLS scheduling algorithm is given by Algorithm 1.

IV. SIMULATION AND COMPARATIVE ANALYSIS

Let’s consider the example DAG in Fig. 1 and see how
tasks in it can be scheduled on to a pool of processors P
in Fig. 2 using the TEDLS algorithm. For the sake of sim-
ulation, we randomized the execution times and consumed
power for each of the 10 tasks in Fig. 1 for Processors 1, 2
and 3 within ±10% of the nominal values in Fig. 2. These
values are provided in Tables I, II and III. In this example,
we first consider the case where processors are set to be
running at their maximum speeds, i.e. P1@S1, P2@S1 and
P3@S1.

Table I
EXECUTION OF TASKS IN EXAMPLE DAG ON PROCESSOR 1

Task Number Exec Time Power
@S1(ms) @S1(W)

0 15.74 4.63
1 15.95 4.69
2 16.89 4.97
3 16.2 4.76
4 17.53 5.16
5 15.76 4.64
6 16.29 4.79
7 15.71 4.62
8 16.68 4.91
9 17.4 5.12

Table II
EXECUTION OF TASKS IN EXAMPLE DAG ON PROCESSOR 2

Task Exec Time Power Exec Time Power
Number @S1(ms) @S1(W) @S2(ms) @S2(W)

0 11.11 13.89 15.60 4.59
1 11.25 14.07 15.63 4.60
2 12.11 15.13 17.07 5.02
3 11.45 14.31 16.02 4.71
4 12.44 15.55 17.57 5.17
5 11.03 13.79 15.91 4.68
6 11.41 14.26 16.20 4.77
7 11.22 14.02 15.81 4.65
8 11.58 14.48 16.75 4.93
9 12.2 15.24 17.20 5.06

Table III
EXECUTION OF TASKS IN EXAMPLE DAG ON PROCESSOR 3

Task Exec Time Power Exec Time Power Exec Time Power
Number @S1(ms) @S1(W) @S2(ms) @S2(W) @S3(ms) @S3(W)

0 9.26 23.15 11.01 13.76 15.79 4.64
1 9.2 22.99 11.01 13.76 15.9 4.68
2 10.05 25.13 12.12 15.15 16.97 4.99
3 9.54 23.85 11.41 14.27 15.97 4.7
4 10.33 25.83 12.4 15.5 17.5 5.15
5 9.36 23.41 11.22 14.03 15.81 4.65
6 9.39 23.48 11.51 14.39 16.08 4.73
7 9.2 23.0 11.1 13.88 15.81 4.65
8 9.78 24.45 11.73 14.66 16.75 4.93
9 10.2 25.50 12.39 15.49 17.53 5.16

Per Algorithm 1, we first need to calculate the static
level (SL) and the processor speed difference (∆) of
all tasks. SL gives priority to longest task path in
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the DAG, while ∆ indicates the relative speed of a
processor to the median processor. Here, P2@S1 has
the median speed. In Fig. 1, Task 0 has 5 end tasks.
However, the longest path to an end task can only be
out of the paths containing four tasks. Hence, to figure
out the SL for Task 0 we need to find out the sum of
median execution times of the following three paths.
T0 → T1 → T2 → T4 ⇒ 11.11 + 11.25 + 12.11 + 12.44 = 46.91ms⇐
T0 → T1 → T7 → T8 ⇒ 11.11 + 11.25 + 11.22 + 11.58 = 45.16ms

T0 → T1 → T7 → T9 ⇒ 11.11 + 11.25 + 11.22 + 12.20 = 45.78ms

Thus, the SL for Task 0 is calculated to be 46.91ms. SL
of all the tasks in Figure 1 are shown in Table IV.

Table IV
STATIC LEVEL TABLE

Task Number Median Times Static Levels
0 11.11 46.91
1 11.25 35.80
2 12.11 24.54
3 11.45 22.86
4 12.44 12.44
5 11.03 11.03
6 11.41 11.41
7 11.22 23.41
8 11.58 11.58
9 12.2 12.2

Initially, per Fig. 1, the task ready for execution is Task
0. After Task 0 is scheduled, the following tasks that are
tagged ready have to be scheduled until there is no more task
left. The predicted final temperatures of different processors
executing Task 0 can be calculated using the heat model
provided in (6) and the power consumption and execution
time values given in Tables I, II and III. Table V shows the
final temperature values for Task 0. Here, we use a typical
value of β (thermal resistance) = 1 J/K and of ρ (cooling
constant) = 0.003 K/J per [20]. Also, we use an arbitrary
value of T0p(0) (initial temperature) = 313.15 K (40 ◦C).

Table V
STEP 1A OF THE TEDLS ALGORITHM

Task β Pnp ρ Tnp(t1) (t2 − t1) Tnp(t2)
Processor 1

0 1 4.63 0.003 313.15 15.74 369.91
Processor 2

0 1 13.89 0.003 313.15 11.11 454.71
Processor 3

0 1 23.15 0.003 313.15 9.26 516.02

Once final temperatures are determined, the NormTemp
values can be calculated using (5). These values are shown
in Table VI. In accordance to [7], we chose the MaxTemp
to be 358.15 K (85 ◦C).
The next step requires calculation of TEDLnp using (3).
The results are shown in Table VII. Since Task 0 does not
depend on the result of any previous task, DA of Task 0
for all processors is 0 ms. Also, since all processors are at
their idle states, before the execution of Task 0, TF for all
processors is also 0 ms.

Table VI
STEP 1B OF THE TEDLS ALGORITHM

Task Tnp(t2) MaxTemp NormTemp
Processor 1

0 369.91 358.15 1.03
Processor 2

0 454.71 358.15 1.27
Processor 3

0 516.02 358.15 1.44

Table VII
STEP 1C OF THE TEDLS ALGORITHM

Task SL DA TF ∆ DL NormTemp TEDL
Processor 1

0 46.91 0.0 0.0 -4.63 42.28 1.03 40.89 ⇐
Processor 2

0 46.91 0.0 0.0 0.0 46.91 1.27 34.26
Processor 3

0 46.91 0.0 0.0 1.85 48.76 1.44 27.27

Table VII indicates that Task 0 has the highest value of
TEDL for Processor 1. High TEDLnp generally indicates
a low expected final temperature. However, a large ∆ may
cause a processor with a high Tnp(t2) to have a high
TEDLnp. Thus, according to Algorithm 1, we need to
check if T01(t2) is the highest Tnp(t2). Per Table V, T01(t2)
is 369.91 K, which also happens to be the lowest Tnp(t2).
Therefore Task 0 is scheduled to Processor 1. Per (6),
expected final temperature value (Tnp(t2)) is proportional
to the power consumed (Pnp). Hence, a processor with
the lowest Tnp(t2) will likely be the most energy efficient
processor as well.

Per Fig. 1, the next ready tasks are Task 1 and Task
3. At Step 2, the above process is repeated for Task 1 and
Task 3. Table VIII shows the calculation for TEDL values
of both Tasks 1 and 3 on different processors. DA for both
Processor 2 and 3 is the summation of the execution time
of Task 0 on Processor 1 and the communication delay for
the results of Task 0 to travel to either Processor 2 or 3, i.e.
DA12 = DA32 = 15.74 ms + 1.99 ms = 17.73 ms. Since
both of the processor are idle, TF for both Processor 2 and
3 is zero. DA and TF for Processor 1 are both 15.74 ms,
since both previous and present task would reside in the
same processor.

Table VIII
STEP 2 OF THE TEDLS ALGORITHM

Task SL DA TF ∆ Tnp NormTemp TEDL
Processor 1

1 35.80 15.74 15.74 -4.70 426.20 1.19 12.46
3 22.86 15.74 15.74 -4.75 416.20 1.19 1.92

Processor 2
1 35.80 17.73 0.0 0.0 458.43 1.28 13.01 ⇐
3 22.86 17.68 0.0 0.0 462.01 1.29 3.68

Processor 3
1 35.80 17.73 0.0 2.06 512.15 1.43 11.47
3 22.86 17.68 0.0 1.91 530.06 1.48 3.69 ⇐
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Per Table VIII, the TEDL value for Task 1 is the highest
for Processor 2. Since the final temperature of Processor
2 executing Task 1 is also one of the lower values, Task
1 can be scheduled to Processor 2. The TEDL value for
Task 3 is the highest for Processor 3. However, the final
temperature of Processor 3 performing Task 3 is 530.06 K,
which is the highest expected final temperature value for
Task 3. Thus the available Processor with the next highest
TEDL value should be assigned to perform the task. Since
Processor 2 has already been assigned to Task 1, Task 3 has
to be scheduled to Processor 1. Similar tables can be easily
generated for the subsequent ready tasks. Fig. 3(a) shows
the resulting scheduling diagram for the example DAG.

(a) TEDLS algorithm

(b) DLS algorithm

(c) EDLS algorithm

Fig. 3. Scheduling of Processors under the TEDLS, DLS and EDLS
algorithms

For comparative purposes, we applied both the DLS and
EDLS algorithms to the DAG of Fig. 1. Fig. 3(b) and Fig.
3(c) show the resulting scheduling of tasks under the two
algorithms, respectively. The total energy consumed under
an algorithm, En =

∑
Powernp × ExecT imenp, where

Powernp and ExecT imenp are the power consumption and
execution time for for Task n on Processor p, respectively.
Therefore, energy consumption of processors under the DLS,
EDLS and TEDLS algorithms, calculated using Tables I, II
and III, are 2.32 J, 1.86 J and 1.26 J, respectively. Thus,
scheduling using the TEDLS algorithm has resulted in
45.69% and 32.08% energy savings in processors over the
DLS and EDLS algorithms, respectively. The execution time
of application when processors are scheduled with the DLS,
EDLS and TEDLS algorithms are 61.78 ms, 92.86 ms 83.16
ms. The results show that despite the significant energy
saving, the TEDLS algorithm also has improved execution
time over the EDLS algorithm.

P
1

P
2

P
3

546.72 K

673.53 K

873.32 K

Δ
T23 

= 199.79 KΔ
T13 

= 126.81 K

Δ
T12 

= 326.6 K

(a) TEDLS algorithm

(b) DLS algorithm

P
1

P
2

P
3

313.15 K

1389.72 K

313.15 K

Δ
T23 

= 1076.57 KΔ
T13 

= 1076.57 K

Δ
T12 

= 0 K

(c) EDLS algorithm

Fig. 4. Processor temperatures under the TEDLS, DLS and EDLS
algorithms

We next used the heat model of (6) to predict the final
processor temperatures. Fig. 4 shows the predicted final
temperatures for processors scheduled with the TEDLS,
DLS and EDLS algorithms. The goal of this prediction is
not to find the exact value of processor temperatures, but
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rather to compare how processor temperatures vary when
they are scheduled with different scheduling algorithms.
Fig. 4(a) indicates that the final temperature difference
between Processors 1 and 2, δ12 = 326.6 K, is the highest
δ. In contrast, Fig. 4(b) and Fig. 4(c) illustrate the greatest
δ of 1030.55 K and 1076.57 K for the DLS and EDLS
algorithms, respectively. Thus, the TEDLS algorithm re-
sulted in a more uniform temperature distribution among the
processors, which makes them less susceptible to transient
and permanent hardware faults, as well as lower chances
of Elmore Delay [7] during inter processor communication;
Elmore delay can cause a processor circuit to malfunction
and even stall applications.

So far, in this example, only processor speeds P1@S1,
P2@S1 and P3@S1 have been considered. However, the pool
of processors in Fig. 2 can have sixteen other processor-
speed combinations. Table IX shows the energy saving and
speedups of the TEDLS algorithm with respect to the DLS
and EDLS algorithms for all speed combinations for the
example DAG in Fig. 1. In Table IX, Processor Speed
0 indicates that the processor is not being utilized. The
highest Processor Speed is denoted by 1, which according to
Processor Pool in Fig. 2 is around 17 ms for P1, 12 ms for P2

and 10 ms for P3. Processor Speed 2 and 3 denote the lower
processor speeds. It can be seen in Table IX that almost
consistently, the energy saving under the TEDLS algorithm
is greater than those for the DLS and EDLS algorithms.
Energy saving can be as high as 59.82 % and 41.03 %
with respect to the DLS and EDLS algorithms, respectively.
Energy saving under the TEDLS algorithm is greater than
that under the DLS algorithm, because the TEDLS algorithm
focuses on the power efficient and cooler processors. It
has been observed that unlike the EDLS algorithm, the
TEDLS algorithm does not have the tendency to schedule
inter-dependent tasks on the same processor. So high power
consuming tasks are scheduled to cooler and more energy ef-
ficient processors. Also, a faster processor is able to execute
a low energy consuming task. Thus, for the example DAG in
Fig. 1, the difference in processor speed compensates for the
inter-processor communication, causing processors assigned
tasks using the TEDLS algorithm to execute the application
faster than the DLS or EDLS algorithm.

Using the heat model in (6), we determined the final
temperatures of the processors under the DLS, EDLS and
TEDLS algorithms. The results are shown in Table X. Em-
phasis is given on the comparative analysis of temperature
of processors under different scheduling algorithms, and not
on the exact estimation of the temperatures. Also, only cases
where all the processors were utilized are shown. Table X
illustrates that P1 exhibits higher temperature when tasks are
scheduled onto it using the TEDLS algorithm. On the other
hand, P2 and P3 exhibit higher processor temperatures under
the DLS and EDLS algorithms. This is because the TEDLS
algorithm schedules tasks onto the more energy efficient and

slower processors. P1 being the most energy efficient, gets
scheduled with more tasks when scheduled with the TEDLS
algorithm. This causes temperature of P1 to increase. P2 and
P3, being less energy efficient, get scheduled with fewer
number of tasks, and thus their temperatures would not be
affected much.

Table IX
COMPARISON OF ENERGY CONSUMPTION AND EXECUTION TIMES FOR
DLS AND EDLS ALGORITHMS WITH THOSE FOR TEDLS ALGORITHM

Case P1 P2 P3 % Energy saving % Energy saving % Speedup % Speedup
Number Speed Speed Speed wrt DLS wrt EDLS wrt DLS wrt EDLS

1 1 1 0 37.81 16.01 0.73 1.04
2 1 2 0 -0.26 -0.26 13.44 13.45
3 1 0 1 53.07 36.83 -33.30 -25.93
4 1 0 2 38.42 17.79 -1.48 -0.66
5 1 0 3 -0.39 -0.39 8.26 8.26
6 0 1 1 16.76 4.39 16.62 11.31
7 0 1 2 -1.27 -1.27 16.05 16.05
8 0 1 3 42.77 22.68 -11.31 2.54
9 0 2 1 53.21 31.36 -32.99 -16.69

10 0 2 2 43.06 23.79 -16.20 -15.46
11 0 2 3 -0.24 -0.24 16.31 16.31
12 1 1 1 45.69 32.08 -0.18 7.32
13 1 1 2 27.58 14.47 1.92 1.39
14 1 1 3 41.80 21.27 34.44 42.51
15 1 2 1 59.82 41.03 3.05 11.79
16 1 2 2 43.16 23.87 35.22 34.73
17 1 2 3 -0.71 -0.71 14.30 14.30

Table X
COMPARISON OF TEMPERATURE REDUCTION FOR TEDLS ALGORITHM

AS COMPARED WITH DLS AND EDLS ALGORITHMS

Case P1 P1 P1 % Reduction in % Reduction in
Number Temperature (K) Temperature (K) Temperature (K) Temperature Temperature

under DLS under EDLS under TEDLS wrt DLS for P1 wrt EDLS for P1
12 313.15 313.15 659.66 -110.65 -110.65
13 313.15 414.55 603.78 -92.81 -45.65
14 313.15 471.47 550.87 -75.91 -16.84
15 313.15 313.15 554.07 -76.93 -83.05
16 313.15 313.15 554.07 -76.93 -76.93
17 561.80 561.80 496.02 11.71 11.71

Case P2 P2 P2 % Reduction in % Reduction in
Number Temperature (K) Temperature (K) Temperature (K) Temperature Temperature

under DLS under EDLS under TEDLS wrt DLS for P2 wrt EDLS for P2
12 313.15 1230.05 629.51 -101.02 48.82
13 1607.41 1592.50 623.62 61.20 60.84
14 3113.34 2122.24 649.57 79.14 69.39
15 313.15 501.60 594.33 -89.79 -18.49
16 313.15 501.60 547.29 -74.77 -9.11
17 523.08 523.08 497.97 4.80 4.80

Case P3 P3 P3 % Reduction in % Reduction in
Number Temperature (K) Temperature (K) Temperature (K) Temperature Temperature

under DLS under EDLS under TEDLS wrt DLS for P3 wrt EDLS for P3
12 4621.34 3038.37 753.94 83.69 75.19
13 1915.68 1330.32 765.70 60.03 42.44
14 313.15 345.06 555.05 -77.25 -60.86
15 4608.55 3023.74 559.80 87.85 81.49
16 3141.51 2160.06 626.33 80.06 71.00
17 699.84 699.84 555.04 20.69 20.69

To get a better sense of our algorithm’s capability, we
implemented the DLS, EDLS and TEDLS algorithms on
larger DAG’s, which have been randomly generated using
TGFF [21]. Fig. 5 shows the variation in energy consumption
for 10 Task, 20 Task, 30 Task and 40 Task DAGs using
the DLS, the EDLS and the TEDLS algorithm. It can be
observed in Fig. 5 that as the DAG size starts to increase,
energy saving under the TEDLS algorithm with respect to
the DLS or EDLS algorithm also increases. Thus, in a
practical scenario where DAG sizes are large, the TEDLS
algorithm will give rise to a substantial energy saving. Fig.
6 shows variation of execution times of applications when
scheduled using different scheduling algorithms. It is evident
from Fig. 6 that as the DAG size increases, the execution
time under the TEDLS algorithm is negatively impacted.
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This occurs as the TEDLS algorithm, in trying to manage
and provide a uniform temperature among processors, shifts
some of the tasks from faster to slower and more energy
efficient processors.
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Fig. 5. Variation of Energy consumption for 10 Task, 20 Task, 30 Task
and 40 Task DAGs

Fig. 6. Variation of Execution time for 10 Task, 20 Task, 30 Task and 40
Task DAGs

V. CONCLUSION

In this paper we presented an offline algorithm that
not only helps in achieving low and uniform processor
temperature, but also produces lower energy consumption
than the energy efficient EDLS algorithm. Also, for smaller
DAG sizes, the TEDLS algorithm is shown to be competitive
with the DLS algorithm that focuses on fastest execution of
tasks. However, as the DAG size increases in a processor
constrained environment, the TEDLS algorithm schedules
more tasks to slower and energy efficient processors to
manage processor temperature and energy consumption.
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