
Fault-Tolerant Design of Digital Systems

EGE 534

Introduction:

What is fault and fault-tolerant computing?

Dr. Baback Izadi
Department of Electrical and Computer Engineering and

State University of New York – New Paltz

bai@engr.newpaltz.edu

Class Information

 Class Times:

 TF 9:25 AM – 10:40 AM REH 111

 Instructor

 Dr. Baback Izadi

 Office Hours

 Tuesday 11:00 AM- 12:00 PM; 1:30 PM – 2:30 PM

 Wednesday 10:00 AM - 12:00 PM

 Friday 11:00 AM- 12:00 PM; 1:30 PM – 2:30 PM

 And, by appointment

Web site:

 http//www.engr.newpaltz.edu/~bai/

Outline

 Grading policy

 Overview and course objectives

 Recommended reading

Why reliable computing?

 Fault – Tolerant computing

 Faults and its manifestation

 Hardware and software fault model

 Sources of failure

Grading Policy

Homework 20 %

Research Presentation 10 %

Midterm Exam 35 % March 7

Final 35 % May 16

Attendance

 Attendance may be taken during the first 10 minutes

 Three missing classes is allowed.

 4th absence -2%

 5th absence -5%

Recommended Reading

 Design and Analysis of Fault-Tolerant Digital Systems, B.

W. Johnson: Addison-Wesley, 1989.

 Fault-Tolerant Computer System Design, D. Pradhan,

Prentice-Hall, 1996.

 Reliable Computer Systems-Design and Evaluation, 2nd

edition, D. Siewiorek and R. Swarz: Digital Press -

Butterworth, 1992.

 Fault Tolerance in Distributed Systems, P. Jalote: Prentice

Hall, 1994

 Performance and Reliability Analysis of Computer Systems,

R. Sahner, K. Trivedi: Kluwer Academic, 1996

 Fault Tolerance through reconfiguration of VLSI and WSI

arrays, R. Negrini: MIT Press, 1989.

Course Overview

Introduction: What is fault and fault-tolerant computing?

Hardware Redundancy – Basic Approaches & Models

Information Redundancy

Evaluation Techniques

MIDTERM EXAM March 7, 2014 (Tentative)

Testing

Check Pointing & Recovery

Software Fault Tolerance

Fault Tolerant Architecture

Trends in Fault Tolerant Architecture

Student Presentations

FINAL EXAM, May 16, 2014 10:15 AM - 12:15 PM

Why Study Reliable Computing!!!

 Traditional needs

 Long-life applications (e.g., unmanned and manned space

missions)

 Life-critical, short-term applications (e.g., aircraft engine

control, fly-by-wire)

 Defense applications (e.g., aircraft, guidance & control)

 Nuclear industry

 Telecommunications Switching systems (1 ESS – 5 ESS)

Mission-critical applications

 Health Care industry

 Automotive industry

 Industrial control systems, production lines

 Banking, reservations, commerce

Why Study Reliable Computing!!! (cont.)

 Networks

 Wired and wireless networked applications

 Data mining

 Distributed, networked systems (reliability and security are the

major concerns)

 Commerce: stores, catalog industry

 Scientific computing, education

 Typically reliability has not an issue till recently.

 IBM Petaflop Blue gene computers reliability a major concern.

Objectives

 System (hardware, software) perspective/view on design issues

in reliable computing

Hardware

System network

Processing elements

Memory

Storage system

Operating system

Reliable communications

SIFT

Application program

interface (API)

Middleware

Applications

What can be provided in COTS

hardware to ensure fail-silent

behavior of system components

(nodes, network)?

What can be provided in the

communication layer?

What can be provided in

software and application itself?

What is typically provided in

the operating system?

How do We Achieve the Objectives?

Hardware

System network

Processing elements

Memory

Storage system

Operating system

Reliable communications

SIFT

Application program

interface (API)

Middleware

Applications

Error correcting codes, N_of_M and standby

redundancy , voting, watchdog timers, reliable

storage (RAID, mirrored disks)

CRC on messages , acknowledgment,

watchdogs, heartbeats, consistency protocols

Memory management, detection of process

failures, hooks to support software fault

tolerance for application

Checkpointing and rollback, application

replication, software, voting (fault masking),

Process pairs, robust data structures,

recovery blocks, N-version programming,

Examples of Computer-related Failures

FAULTS FAILURES

A
v
ai

la
b
il

it
y
 /

R
el

ia
b
il

it
y

S
af

et
y

C
o
n
fi

d
en

ti
al

it
y

False alerts at the North American Air Defense

(NORAD) [Ford 85]

First launch of the Space

Shuttle postponed [Gaman 81]

Excessive radiotherapy doses

(Therac-25) [Leveson & Turner 93]

The “wily hacker” penetrates several tens of

sensitive computing facilities [Stoll 88]

Internet worm [Spatford 89]

9 hours outage of the long-distance

phone in the USA [Neumann 95]

Scud missed by a Patriot

(Dhahran, Gulf War) [Neumann 95]

Crash of the communication system of

the London ambulance service [HA 93]

Authorization denial of credit card

operations in France

The maiden flight of the Arine 5 launcher ended

in a failure (France)

June 1980

April 1981

June 1985 - January 1987

August 1986 - 1987

November 1988

15 January 1990

February 1991

November 1992

26 and 27 June 1993

4 June 1996

P
h
y
si

ca
l

D
es

ig
n

In
te

ra
ct

io
n

L
o
ca

li
ze

d

D
is

tr
ib

u
te

d

Effect of major network outages on business

40

30

20

10

0
1k 10k 100k 1M 10M

Large Insurance Carriers $20k/hour

Major Airlines $2.5M/hour

Trading / Investment Banking $6M/hour

Downtime costs ($/hour)

P
e
rc

e
n

t
o
f

U
se

r
s

Fault-tolerant Computing

Fault-tolerant system

 One that can continue to correctly perform it

specific tasks in the presence of hardware failure or

software errors

Fault-tolerance: the attribute that enables a system to

achieve fault-tolerant operation

Fault-tolerant computing: the process of performing

calculation in a fault-tolerant manner

Faults, Errors, and Failures

Fault is the physical defect, imperfection, or flaw that

occurs within some hardware or software component

 Error is the manifestation of a fault. It is a deviation

from accuracy or correctness

Failure is an incorrect performance of one of the

functions of the system.

Faults Errors Failures

Physical

Universe
Information

Universe

User

Universe

Faults, Errors, and Failures in Computing Systems

Faults Errors Failures

Processor

Permanent (hard) faults

 - Natural failures

 - Natural radiation

 - HW design errors

Transient (soft) faults

 - Power transients

 - Switching transients

 - Natural radiation

 - Single upsets

 - Multiple upsets

Intermittent faults

 - Natural failures

 - Power transients

Software faults

 - SW design errors

 - System upgrades

 - Requirements changes

External faults

Failure to Meet Requirements

 Reliability, long term

 - Mission life

 Reliability, short term

 - Critical functions

 - Database protection

 Availability

 Detection latencies

 Containment boundaries

 Recovery latencies

 Autonomy

Fault Classes

Based on the temporal

persistence

 Permanent faults, whose presence

is continuous and stable.

 Intermittent faults, whose presence

is only occasional due to unstable

hardware or varying hardware and

software states (e.g., as a function of

load or activity).

 Transient faults, resulting from

temporary environmental conditions.

Based on the origin

 Physical faults, stemming from

physical phenomena internal to

the system, such as threshold

change, shorts, opens, etc., or

from external changes, such as

environmental, electromagnetic,

vibration, etc.

 Human-made faults, which may

be either design faults, introduced

during system design,

modification, or establishment of

operating procedures, or

interaction faults, which are

violation of operating or

maintenance procedures.

Faults Due to Human

 Human operators are both a major cause of failures and a major

agent of recovery for non-transient failures

Public Switched Telephone Network

Operator

59%

Hardware

22%

Software

8%

Overload

11% Operator

Hardware

Software

Overload

Average of three internet sites

Operator

51%
Hardware

15%

Software

34%

Overload

0%

* Oppenheimer, Ganapathy et al, ‘Why internet services fail and what can be done about it

Fault Cycle & Dependability Measures

MTTF

MTTR

MTBF

REPAIR TIME

System Initialization

Fault occurs

Error occurs

Failure or

Error detection

Repair

Next fault occurs

ERROR Latency

FAULT Latency

Reliability:
a measure of the continuous delivery of service;
R(t) is the probability that the system survives
(does not fail) throughout [0, t];
expected value: Q(t) = 1 – R(t)
MTTF(Mean Time To Failure)

Availability:
a measure of the service delivery with respect to
the alternation of the delivery and interruptions
A(t) is the probability that the system delivers
a proper (conforming to specification)service at
a given time t.
expected value: EA = MTTF / (MTTF + MTTR)

Maintainability:
a measure of the service interruption
M(t) is the probability that the system will be
repaired within a time less than t;
expected value: MTTR (Mean Time To Repair)

Safety:
a measure of the time to catastrophic failure
S(t) is the probability that no catastrophic failures
occur during [0, t];
expected value:
MTTCF(Mean Time To Catastrophic Failure)

Prior Failure

Dependable Computing

 Dependability is property of computer system that allows reliance
to be placed justifiably on service it delivers. The service delivered
by a system is its behavior as it is perceptible by its user

DEPENDABILITY

ATTRIBUTES

AVAILABILITY

RELIABILITY

SAFETY

CONFIDENTIALITY

INTEGRITY

MAINTAINABILITY

FAULT PREVENTION

FAULT TOLERANCE

FAULT REMOVAL

FAULT FORECASTING

FAULTS

ERRORS

FAILURES

MEANS

IMPAIRMENTS

Hardware Fault Models

Stack-at

Example: a parallel
processor topology

View machine as a
graph

- nodes correspond to
 processors

- edges correspond to
 links

Fault Model:

A processor (node) or
link (edge) faulty

Example: Memories

One or more cells are
stuck at 0 or 1

One or more cells
fail to undergo 0-1
or 1-0 transition

Two or more cells are
coupled

A 1-0 transition in one
cell changes contents
in another cell

More than one cell is
accessed during READ
or WRITE

A wrong cell is accessed
during READ or WRITE

Example: physical
failures in circuits

Lines in a gate level
stuck at 0 or 1

Faulty contact

Transistor stuck open
or closed

Metal lines open

Shorts between
adjacent metal lines

Module level Functional level System level

Example: decoder

No output lines
activated

An incorrect line
activated instead of
desired line

An incorrect line
activated in addition
to desired line

s-a-0

Software Fault Models

IBM OS

Allocation management : Memory region used after

deallocation

Copying overrun: Program copies data past end

of a buffer

Pointer management: Variable containing data

address corrupted

Wrong algorithm: Program executes but uses

 wrong algorithm

Uninitialized variable: Variable used before initialization

Undefined state: System goes into unanticipated state

Data error: Program produces or reads wrong data

Statement logic: Statements executed in wrong order or

omitted

Interface error: A module's interface incorrectly defined

or incorrectly used

Memory leak: Program does not deallocate memory it has

allocated

Synchronization: Error in locking or synchronization code

GUARDIAN 90

Incorrect computation: Arithmetic

overflow or an incorrect arithmetic

function

Data fault: Incorrect constant or

variable

Data definition fault: Fault in

declaring data or data structure

Missing operation: Omission of a few

lines of source code

Side effect of code update: Not all

dependencies between software

modules considered when updating

software

Unexpected situation: Not providing

routines to handle rare but legitimate

operational scenarios

Software Fault Models (Myrinet Network Switch)

Message dropped A message was dropped.

Data corrupted A message with incorrect data was sent.

Restart The Myrinet Control Program restarted itself.

Interface hung The interface (on local or remote node) was not

 able to operate properly.

Computer crash The system (local or remote node) crashed.

Failure Sources and Frequencies

Non-Fault-Tolerant Systems

 Japan, 1383 organizations

(Watanabe 1986, Siewiorek &

Swarz 1992)

 USA, 450 companies (FIND/SVP

1993)

Mean time to failure: 6 to 12 weeks

Average outage duration after failure:

1 to 4 hours

Fault-Tolerant Systems

–Tandem Non-Stop Computers (Gray

1990, HP now)

– Mean time to failure: 21 years (Tandem)

Failure Sources:

12%

62%

11%

15%

48%

33%

10%

9%

Hardware &
maintenance

Software

Environment

Operations &
procedures

12%

62%

11%

15%

48%

33%

10%

9%

Hardware &
maintenance

Software

Environment

Operations &
procedures

