Checkpointing And

c Rollback Recovery
P Techniques For A
J Distributed System

Preetha Natesan

Wi,

_o*

Presentation Overview

2 Distributed System
“1 Checkpointing Concepts
1 Message Logging

“1Rollback Recovery

21 Quasi-Synchronous Algorithm (QSA)
= Checkpointing
= Basic Recovery
“1Message Classification /(’/‘
-1 Comprehensive Recovery in QSA g
~1 Conclusion ,/

Distributed System

“ Multiple processes

1 States of processes depend on one another due
to inter-process communication

= Messages are sent/received between processes

E CwS A
" I\ M3M Ms \“47 /(/
Pizo | --Timeline --> | | /4‘

-~

Checkpointing Concepts

_I Definition
= saving of program state, usually to a stable storage
= useful for reconstructing at a later time
2 Classification
= ASynchronous
» checkpoints taken periodically w/o coordination
* allows maximum process autonomy
® low checkpointing overhead
e suffers from Domino Effect
= Synchronous
e processes synchronize their checkpointing activities

e globally consistent set of checkpoints maintained
® Domino Effect free /j/

® no process autonomy

e performance degradation 4
= Communication Induced or Quasi-Synchronous

® Checkpointing activity is partially synchronized /

e Easeness and low overhead of asynchronous checkpointing

® Recovery time advantages of synchronous checkpointing

Message Logging

“IWhat is it?

= Generally used along with checkpointing

= Restores the system to a consistent state in case of a failure
_I Classification

= Pessimistic

® Received messages are stored in stable storage before
being processed

® Helps faster recovery
e Performance Degradation
= Optimistic
® Received messages are stored in volatile storage ; 4 a//
periodically flushed to stable storage during idle time :
e Messages stored in volatile storage lost during failure 4‘

e This can cause repeated rollback /

Rollback Recovery

u Definition

= Finding a consistent global snapshot from
previously saved checkpoints of the processes and
restarting from that state

u Goal of a good rollback recovery technique
= Minimize the computation due to rollback

/(,/

o

Ve

Some salient features

-1 Checkpointing provides the backbone for :
= rollback recovery (fault tolerance)
= playback debugging
= process migration
= job swapping
-1 Checkpointing and rollback recovery enable a system to :

= tolerate failures by periodically saving the entire state and
rolling back to the saved state if an error is detected

~Rollback recovery using checkpointing is :
= a cost effective method of proving fault tolerance against

transient and intermittent faults > b//

e

-~

System Model

2 A distributed system consists of N sequential
processes [Pl, P2, P3...PN].

~ The concurrent execution of all processes on a
network of processors is called a distributed
computation.

“1Message passing is the only way for processes to
communicate with one another.

“1No assumption is made on the FIFO nature of

the channel. /(/‘

1 The local state of a process saved in the stable P’
storage is called a checkpoint of the process. /

-~

Definitions and Notations

~Each Checkpoint (C) of a process is assigned a unique sequence
number -denoted by C.sn.

-1 Each message (M) is piggybacked with the sequence number(M.sn) of
the latest checkpoint of the process sending it.
~ The checkpoint with sequence number m of Process Pi is denoted by
Ci,m.
4 Basic checkpoint
= Independently taken by a process
4 Forced checkpoint
= Checkpoint triggered by a message reception

1 Consistent Global Checkpoint Y

= A set of local checkpoints. one from each process is called a consigtent

global checkpoint if none of them is causally dependent on er
checkpoint in the set

-~

Domino Effect

~1 The fault causes process P, to roll back to
checkpoint C,, and process P, to roll back to
checkpoint C,,

Fault
P, | | |
P | I I
2 I(:Z,k 'CZ,k+1 'C2,k+2

A Quasi-Synchronous
Checkpointing Algorithm (QSA)

~IEach process Pi has two variables
= SN.i - seq. # of latest checkpoint taken by Pi; initialized to 0
= Next.i - seq # to be assigned to the next basic checkpoint of Pi; initialized to |
~Next.i is incremented by Pi every x time units
4 When it is time to take a basic checkpoint
= If Next.i > SN.i
* Take checkpoint Ci; /* Basic checkpoint */
® Ci.sn = Next.i; SN.i = Ci.sn
= else
e Skip the checkpoint
2 When Pi sends a message M

= send(M) & /

4'When process Pj receives a message M from Pi,
= If M.sn > SN,j e

e Take checkpoint Cj; /* Forced checkpoint */
e Cj.sn = M.sn; SN.j = Cj.sn

= Process the message

= M.sn = SNL.i; /* piggyback M with sequence number of current checkpoint */ y

QSA Example

Legend

_ - Schd. basic
| - Basic chkpt - Forced chkpt chkpt

|:>1 3i 1 4
L.
P2

¢ I
) I I\ya\\\d¥2 | H)ya
1 2 3

I
[
4 S
—-Time-->
* The numbers in the chart are the chkpt seq. numbers

* When its time for a process to take a basic chkpt, it takes a basic
chkpt only if it did not already take a forced chkpt with the seq. #

that is expected to be assigned to the next basic chkpt; otherwise y
it skips taking the basic chkpt.

Basic Recovery Algorithm

4 Assumptions

= If a process fails, then no other process fails until the system is restored to a fully
consistent state

= The recovery algorithm is fully asynchronous

4 Each process Pi has two more variables
= inc.i - Incarnation number of process Pi ; initialized to 0
= rec_line.i - Recovery line numbers; initialized to 0

2 When Pi sends message M

= M.rec_line = rec_line.i /* piggy back M with current recovery line number */
= M.inc = inc.i /* piggy back M with current incarnation number */
2 When process Pj receives message M
= |f M.inc > inc,j /* possible if M was sent by a process that has */
e rec_line.j = M.rec_line; /* already rolled back based on a failure; / ,/
¢ inc.j =M.inc; /* in that case, do not process M; Roll_back(P 3

o Roll_back(Pj); //4/

Basic Recovery Algorithm (contd)

“'When a process Pi fails
= Restore the latest checkpoint
= Increment inc.i ; rec_line.i = SN.i
= send roll_back(inc.i,rec_line.i) to all other processes
= continue normally
“'When process Pj receives roll_back(inc.i,rec_line.i) from Pi

= If inc.i > inc.j [* otherwise, if inc.i = inc.j, Pj is aware of this */
e inc.j = inc.i [* recovery through a msg sent by some other */
e rec_line.j = rec_line.i /* process that has already rolled back; hence, */
e Roll_back(Pj) /* no need for roll back in that case g

= continue normally

4 Procedure Roll_back(Pj)

= |f rec_line.j > SN,
* No need to roll back; /
e take a new checkpoint which can be part of the recovery line /

= else >
¢ roll back to the earliest checkpoint C with C.sn >= rec_line,| 4
® restore checkpoint C
¢ Delete all the checkpoints beyond C

Basic Recovery Algorithm
- An example

_1 Consider failure of P;, as shown below
2 Steps taken by P,
= increment inc.3 to | /* it was initially zero */
=set rec_line.3to5 /*the seq. # of last checkpoint */
= roll back to latest checkpoint C;;
= send rollback(1,5) to processors P, and P,
4 Steps taken by P,
= roll back to C,s /* since it is the earliest chkpt whose seq. # >=5 */

4 Steps taken by P,
= Take checkpoint (C, ;) of the current state /* since it does not have chkpt whose seq. #>=5 */
= Assign seq # 5 to the checkpoint taken

u Thus, {C, s, C,s, C;s5} will be the recovery line for this failure

I Note: Seq # of all the checkpoints in the recovery line is equal. In general, that need not b
P, Caise %i : 4 7 ()
. e
2 I ' I
o Nl
Ps } '

Ré’covery Li%e

f
P, Fails here

Basic Recovery Algorithm
- Domino Effect Free

~1 The fault causes process P, to roll back
to checkpoint C, ,.; and process P, to roll
back to checkpoint C, .3

i /t\/‘f\/%l/xm"

2k2 2,k+3

Recovery Line

/

-~

Basic Recovery Algorithm
- Analysis

' This algorithm guarantees that processes roll back to a consistent global
checkpoint in the event of a failure

I As a result of rollback,

= the reception of some messages might be undone while the corresponding
send event might not have been undone, (message M; in the figure)

P1 ?H 4 /"
1
4
P f ‘
2 'vo Ma Falls here
P3 | |
0 1 2 3

Recovery Line

/

=1So, even though the processes roll back to a consistent global checkpoint,
it may not leave the system in a consistent state

Comprehensive Recovery

“ Modify the Basic Recovery algorithm to restore the
system to a consistent state after rolling back the
processes to a consistent global checkpoint

“IRollbacks could result in undoing the send and/or receive
events of many messages

= This may result in several abnormal situations

~ These should be dealt correctly in order to restore the
system to a consistent state

_I Different types of messages need to be handled
YP g /E//

>3

e

-~

Message Classification

~Lost Messages

= Messages whose send events are not undone but whose receive events are
undone due to rollback

= Arises when a process rolls back to a chkpt prior to the reception of the
msg while the sender does not rollback to a chkpt prior to the send event

= |n the figure, M, is a lost message

(. Failure

Recovery Line

Message Classification

“Delayed Messages

= Messages that were sent before the rollback whose receive events were
not recorded

= Arises when messages were received while the receiving process was down
or received after the rollback of the receiving process

= [n the figure, M, and M; are delayed messages

'« Failure
‘ X

Recovery Line

Message Classification

“Duplicate Messages

= Happens due to message logging and replaying them during recovery

= In the figure, message M, was sent and received before the rollback

= Due to rollback, P, undoes the receive of M, and P; undoes the send of M4
= |[f P, replays M,, then M, will be a duplicate message since P; will resend M,

'« Failure
‘ X

Recovery Line

Message Classification

1 Orphan Messages

= Messages which have been received and whose send has been undone due to
rollback, but whose receive has not been undone

= Orphan messages do not arise if processes roll back to a consistent global
checkpoint

= So, the Basic Recovery Algorithm does not have problems with orphan msgs
= |n the figure, message M is an orphan message

P, |

P2 H Xezilure /(/

o

e

-~

Comprehensive Recovery
- Message Handling

1 Goal

= |dentify the minimal set of messages that need to be
logged to and replayed from the message log

4 Proposed Approach

= Need to handle only delayed messages that are
received after a failed process recovers, lost
messages and duplicate messages

= This is accomplished by allowing processes to S
* log received messages selectively and € ‘

* replay logged messages selectively afteVﬂJack

-~

Comprehensive Recovery
- Message Handling : Replay Rule

“'When a process Pj rolls back to a checkpoint C, it
replays a message M from its message log if and only
if M was received after the checkpoint C was taken
and M.sn < rec_line.j

= This means that Pj must replay all those messages whose
receive was undone but whose send will not be undone

= In other words, Pj must replay only those messages that
originated to the left of the current recovery line and
delivered to the right of the current recovery line

/(/

o

e

-~

Comprehensive Recovery
- Message Handling : Logging Rule

21 Suppose Pj receives a message M from Pi.

_If Pj is replaying messages as a result of a rollback
= Buffer message M
= Process it only after finishing replaying

-1 Otherwise

= If M is a delayed message (M.inc < inc.j) , process it only
if M.sn < rec_line.j; else discard message M

= Log the message M before processing it if

e M.inc <inc.j && M.sn < rec_line.j OR -
e M.inc = inc.j && M.sn < SN, /‘
e If M.inc > inc.j, then from the algorithm we set 4

inc.j = M.inc and Pj rollbacks. The message isW
handled as in the previous case el

QSA
- Merits

4 The QSA checkpointing algorithm

= has the easness of asynchronous checkpointing and the
advantages of synchronous checkpointing

= guarantees the existence and progression of a recovery line
consistent with the latest checkpoint of each process

= has no additional control message overhead and it has nominal
checkpointing overhead

4 The QSA comprehensive recovery algorithm

= uses the recovery line to restore the system to a consistent
state asynchronously, in the case of a single process fai

= has a low recovery overhead since messages are loggetand

replayed selectively
= does not involve an explicit synchronization oveghead

= does not suffer from domino-effect

Conclusion

~1 The talk focussed on checkpointing and recovery for a
distributed computing system

~1 Gave an overview of the various concepts
= Checkpointing, Rollback Recovery and Message logging
“IPresented the Quasi-Synchronous Algorithm consisting of
= Checkpointing
= Basic Recovery
= Comprehensive Recovery
~1Showed examples to explain the QSA algorithm P I -

“1 Analyzed the different types of messages and how#hs
comprehensive recovery technique handled th?J

-~

References

2 D.Mannivannan and M. Singhal. "A Low-Overhead Recovery
Technique Using Quasi-Synchronous Checkpointing”. Proc. |IEEE
|6th Int'l Conf. Distributed Computing Systems, pp 100-107
HongKong, May 1996

~1F.Quaglia, B.Ciciani and R.Baldoni. "A Checkpointing-Recovery
Scheme for Domino-Free Distributed Systems". IEEE Annual

Workshop on Fault -Tolerant Parallel and Distributed Systems,
Geneva, April 1997

~D.Mannivannan and M. Singhal. "Quasi-Synchronous Checkpointing:
Models, Charasterization, abd Classification". IEE Transactions on
Parallel and Distributed Systems, Vol.10, No. 7, July 1999. /i/

o

o

<

Thank You

