Name:

Problem 1 (15 Points)

- a. Three fundamental terms used in this course are *fault, error,* and, *failure*. In one to three sentences, clearly distinguish these terms from each other.
- b. What is the difference between a *permanent fault*, an *intermittent fault*, and a *transient fault* in term of fault duration?
- c. Comment on the following statement with justification. Single faults can cause multiple bit errors and multiple faults can cause single error.
- d. Comment on the following statement with justification. A fault-tolerant system necessarily has a high reliability.
- e. Define the following: *reliability, availability, safety*, and *performability*. Does a system with a high availability necessarily have a high reliability?

Problem 2 (15 Points)

Design a one-bit 5MR voter using basic gates.

Problem 3 (20 Points)

A cyclic code is to be based on the Generator polynomial $X^8 + X^6 + X^5 + X^3 + 1$. Show the logic diagram for the code encoder.

a. Generate a codeword for the input data 10101.

b. Using logic gates, design an appropriate encoder and decoder the given cyclic code.

Problem 4 (20 Points)

A 2M X 16 memory system is design using 1 M X 4 chips. Assume chip failure modes are single-bit cell (50%), single-row all-0's (20%), single-column all-0's (20%), and whole-chip all-0's (10%). Also, assume 0 and 1 values are equally likely. Compare and comment on relative performance (single-error-detection coverage) and overhead of the following approaches.

- a. Bit per chip
- b. Bit per multiple chips
- c. Duplication
- d. Single precision checksum (one sum for the entire memory).

Problem 5 (10 Points)

- a. Draw a block diagram showing the overall structure of a reconfigurable NMR system (i.e. N-modular redundancy with spares) based on hybrid redundancy. Briefly explain how the system tolerates fault.
- b. Compare and contrast hybrid redundancy with active redundancy scheme. Discuss the main advantages and disadvantages of the two methods.

Problem 6 (15 Points)

Consider a random-access memory that has a word format $X_7 X_6 X_5 X_4 X_3 X_2 X_1 X_0$ of size 8 bits. We want to use Hamming code to correct any single bit in this memory.

- a. Show the circuitry that generates the syndrome.
- b. Determine the error-free syndrome as well as resulting syndrome for each single-bit error in X₇ X₆ X₅ X₄ X₃ X₂ X₁ X₀.
- c. Explain how you would modify the scheme in order to obtain a single error correction / double error detection code.

Problem 7 (15 Points) Transform the circuit with the function $F = A\overline{B} + C$ into a self-dual circuit with the additional input D.

Problem 8 (20 Points)

In class we discussed that residue-3 code can be calculated using successive module-3 additions. Based on this technique, how do you obtain residue-7 check bits of $X_7 X_6 X_5 X_4 X_3 X_2 X_1 X_0$? What is the theoretical base for this easy encoding process. Hint: use the weights of bit groups.

Problem 9 (20 Points)

Using the combinatorial model, determine the reliability of a simplex, TMR, and 5MR systems as a function of reliability of a simplex system, R(t). You may assume a fault-free voter. Plot the reliability of the three systems versus R(t) and comment on their relative reliabilities.

Problem 10 (20 Points) Using Markov model, determine both discrete and continues-time solution for the reliability of a TMR system with λ failure rate and μ repair rate. You may assume that the system initially is fault free.

Due October 23, 2002