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ABSTRACT

This paper provides a conceptual framework for
expressing the attributes of what constitutes dependable
and reliable computing

- the impairments to dependability faults, errors,
and failures,

- the means for dependability fault-avoidanec,
fault-tolerance, error-removal, and error-

This paper isan editedversion of [Lap $4]. &
ing backward in time, a milestone was the special meet-
ing devoted to fundamental concepts held in conjunction
with FIWS1l. A special session was organized at
IWCS12, devoted to the presentation of viewpoints ela-
borated in several places and institutions [And 82, Avi
82, Kop 82, hp 82, Lee 82, Rob 82]. lb previous
versions of this paper were then discussed during the
1983 and 1984 Winter and Summer meetings of the IFIP
WG 10.4.

forecasting,

- the measures of dependability reliability, availa- The paper proceeds by refinements: dependabili-

bility, maintainability, and safety. ty is &at introduced as a global concept. Fauk-

Emphasis is being put on the dependability impairments toleranee is then detailed.

and on fault-tolerance.
The guidelines which have governed this presen-

FOREWORD tation can be summed up as follows:

-seareh fortheminimum munberof concepts
This paper is aimed at giving informal but precise

definitions eharaetenzm
enabling the dependability attributed to be ex-

“ - g the various attributes of com- pressed,
ping systemsdependability. It is a contribution to the
work undertaken within the “Reliable and Fault-

. use of terms which are identical to (whenever

Tolerant Computing” seientitic and teehnical community possible) or as close as possible to those general-

[Avi 78, Ran 78, Car 79, Lap 79, And 81, Se 82, Cri
lyused; asarule, atermwhich hasnotbeende-

84] in order to propose clear and widely acceptable de-
fined shall retain its ordinary sense (as given by

finitions for some basic ooncepts.
any dictionary),

- emphasis on integration (as opposed to speciali-
The work presented here has been oondueted zillion) [Gel 82].

within the framework of the subcommittee “Fundamen-
tal Concepts and Terminology”, which is common to the In each section, concise definitions are given
IFW WG 10.4 “Reliable Computing and Fault- first, then they are heavily eummented in order to (at-
Tolerance” and to the IEEE Computer Society ‘fC tempt to) show the wide applicability of the adopted
“Fauk-Tolerant Computing”. presentation.

Boldfaee characters areusedwhen aterm is&
fined, italic characters being an invitation to focus the

l’l%awork prcaentedhercbasbeenpsrt.ly perfonnedwbiletha reader’s attention.
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TEE DEPENDABILITY CONCEPT

BASIC DEFINITIONS AND ASSOCIATED TERMINOLO-
GY

Computer system dependability is the guality 4
the &livered service s ch that reliance can @@ably be

Yplaced on this service .

The serviee delivered by a system is the system behavior
as it is perceived by another special system(s) interacting
with the considered system its user(s).

A system failure occurs when the delivered ser-
vice deviates from the specifkd seMce, where the ser-
vice spedfication is an agreed description of the expect-
ed service. The failure occurred bexause the system was
erroneous: an error is that part of the system state
which is liable to lead to failure, i.e. to the delivery of a
service not complying with the specified service. The
cause -- in its phenomenological sense -- of an error is a
fault.
Upon occurrence, a fault creates a latent error, which
becomes effective when it is activated; when the error
affects the delivered seMce, a failure occurs. Stated in
other terms, an error is the manifestation in the system
of a fault, and a failure is the manifestation on the ser-

vice of an error.

Achieving a dependable computing system calls
for the combined utilization of a set of methods which
can be classed inta

- fault-avoidance: how to prevent, by construdon,
fault occurrence,

- fault-tolerance: how to provide, by redundmcy,
seMce complying with the specification in spite
of faults having occurred or ownrring,

error-removab how to minimize, by ver#ication,
the presence of latent errors,

. error-forecasting how to estimate, by evahuz-
tion, the presence, the creation and the conse-
quences of errors.

Fault-avoidance and fault-tolerance may be seen as con-
stituting dependability procurem enti how to providir the
system with the ability to &liver the spec@ed service;
error-removal and error-forecasting may be seen as con-
stituting dependability validation: how to reach co@
dence in the system ability to deliver the specified ser-
vice.

The life of a system is perceived by its users as
an alternation between two states of the delivered ser-
vice with respect to the specified service:

. service aeeomplfshment, where the semice is
delivered as specified,

service interruption where the delivered service
is different from the specified service.

The events which constitute the transitions between
these two states are the failure and the restoration.
Quantifying this accomplishment-interruption altern-
ationleads to the two main measures of dependability

. reliability a measure of the continuous service
accomplishment (or, equivalently, of the time to
failure) from a reference initial instant,

availability a measure of the service accom-
plishment with respect to the alternation of w
complishment and interruption.

COMMENTS

1. On the introduction of &pendability as a generic con-
cept

Why should another term be added to an already
long list ? reliability, availabtity, safety, etc. The rea-
sons are basically two-fold

. to remedy the existing confusion between relia-
bility in its general meaning (reliable system)
and reliability as a mathematical quality (system
reliability),

. to show that reliability, maintainability, availa-
bility, safety, etc. are quantitative measures
corresponding to distinct perceptions of the same
attribute of a system: its dependability.

In regard to the term “dependability”, it is
noteworthy that from an etymological point of view, the
term”reliability” would be more appropriate ability to
rely upm. Although dependability is synonymous with
reliability, it brings in the notion of dependence at a
second level. ‘l’’hismay be felt as a negative eonnotation
at first sight, when compared to the positive notion of
trust as expressed by reliability, but it does highlight our
society’s ever increasing dependence upon sophisticated
systems in general and especially upon computing sys-
tems. Moreover, “to rely” comes from the French “r&
Lier”,itself from the Latin “religare”, to bind back: r-,
back and ligare, to fasten, to tie. The necessary soli-
darity for reaehing reliability is present! The French
word for reliability, Yiabilite” traces back to the 12th
century, to the word ‘fiablete” whose meaning was

lmsdefillitionisadsptedfrom[cartlz],Whcse”trustwmlhcs
and continuity” hss been replacedby“quality”.



“characterof being trustworthy”; the Latin origin is
Yidare”, a popular verb meaning “to trust”.

Finally, it is interesting that viewing dependabili-
ty as a more general concept than reliability, availabili-
ty, etc., and embodying the latter terms, has already
been attempted in the past (see e.g. [Hos 60]), although
with less generality than here, since the goal was then
to define a measure.

2. On the notion of service and its specification

From its very deftition, the service delivered by
a system is clearly an abstraction of its behavwr. It is
noteworthy that this abstraction is highly dependent on
the application where the computer system is employed.
An example of this dependence is the important role
played in the abstraction by time: the time granularities
of the system and of its user(s) are generally different.

Concerning specifbtion, what is essential within
the present context is that it is a description of the ex-
pected service which is agreed upon by two persons or
corporate bodies: the system supplier (in a broad sense
of the term: designer, builder, vendor, etc.) and its
(human) user(s).Whatprecedesdoesnotmeanthata
service specifkation will not change omx established.
This would be simple ignorance of the facts of life,
which imply change. The changes may be motivated by
modifying the service expectation: modificaticm of fun~
tionality, correction of some undesired features such as
deficiencies in the agreed specification. Once more,
what is important is that the specification is (re-) agreed
upon.
It is noteworthy that such matters as performanCe, Ob
scrvability, readiness, etc. can be captured by an ap
propriately stated specifkation.

3. On the notions offd, error and fdlure

Fret, some illustrative examples:

- a programmer’s mistake is a fd: the conse-
quence is a (Merit} error in the written software
(erroneous instruction or piece of data); upon
~“vation (activation of the module where the
error resides and an appropriate input pattern
activating the erroneous instruction, instruction
sequence or piece of data) the error bccumes #
fective; when this effective error produces er-
roneous data (in value or in the timing of their
delivery) which affect the delivered service, a
failure occurs,

. a short-circuit omurring in an integrated circuit
is a fault; the consequence (connection stuck at a
Boolean value, modifkation of the circuit fune
tion, etc.) is an error which will remain latent as
long as it is not activated, the continuation of

.

.

.

tie process being identical to the previous exam-
ple,

an electromagnetic perturbationof suftkient en=
ergy is a fink; when (for instance) acting on a
memory’s inputs, it will create an error if active
when the memory is in the write position; the er-
ror will remain latent until the erroneous
memory location(s) is (are) read, etc.

an inappropriate man-machine interaction per-
formed (iadvcrtcntly or deliberately) by an
operator during the operation of the system is a
fault; the resulting altered data is an error, etc.

a maintenance or ooerati.mzmanual Writs’s mis-
take is a fault; the &nseq~ence is an error in the
corresponding manual (erroneous directives)
which will remain latent as kmg as the directives
are not acted upon in order to face a given situa-
tion, etc.

From the above examples, it is easily understood that
the error latency duration may vary considerably,
depending upon the fault, the considered system utiliza-
tion, etc. These examples also explain why an error
was defined as being liabk to lead to a failure. Wheth-
er or not an error will e%xtively lead to a failure
depends on several factors:

- the activation conditions according to which a la-
tent error will become effective,

- the system composition, and especially the
amount of available redundancy

explicit redundancy (in order to ensure
fault-tolerance) which is directly intended
to prevent an error fkom leading to a
failure,

indicit redundance (it is in fact diffkult
to” build a system” &thout any form of
redundancy) which may have the same
(unexpected) result as explicit redundancy,

- the very deftition of a failure from the user’s
viewpoint, e.g. in the notion of ‘“acceptableerror
rate” (implicitly: before considering that a
failure has occurred) in data transmission.

These examples finally enable the introduction of the
notion of fault classes, which are classically [Avi 78]
physical faults and human-made faults. Proposed deil.n-
itions are as follows:

- physical fanltw adverse physical phenomena,
either internal (physicxxhemical disorders:
threshold changes, short-circuits, open-
circuits...) or external (environmentrd perturba-
tions: ektro-maguetic perturbations, tempera-
ture, vibration, . ..).

- human-made faults: imperfections which may
be:



l desfgn fmdta, committed either a) during
the system initial design (broadly speak-
ing, from requirement specification to im-
plementation) or during subsequent modif-
ications, or b) during the establishment of
operating or maintenance procedures,

l fnteraetfon faults: inadvertent or deli-
berate violations of operating or mainte-
nance procedures.

Faults, errors and failures are all unakired cir-
cunwtances. At fit sight, the three notions are neces-
sary: a) the omurenee of an undersired circumstance
affwting the serviee -- failure -- is felt by the user(s)
and assessed, b) an (internal) system undesired &
eumstanee -- error -- is deteeted, c) the undesired eir-
eumstanee able to give rise to a system error -- fault --
and later on to a serviee failure is either avoided or
tolerated. Assignment of the terms fault, error and
failure to the phenomenologieal cause, the syxtern and
the serviee undesired eireumstanees simply takea into
amount current usage: fault-avoidance or -toleranee, er-
ror deteetion, failure rate.
Moreover, it seems important to differentiate between
the cause with respeet to activation and propagation --
error causing failure --, and the cause with respeet to
the (suspeeted) originating phenomenon(a) -- fault caus-
ing error -- .

It could be argued that with such a reasoning
(fault viewed as the phenomenologieal cause of error)
one ean go “a long way W“. For instance, if we 100IK
back at two of the previously given examples:

- why did the programmer make a mistake?

- why did the short oeeur in the integrated eireuit?
In fact, recurswn stops at the cause which is intended to
be avoided or tolerated. f.f fault - avoialmce is meaning-
ful within this eontext (when a cause is avoided, its ef-
feets are of little interest), it may not be so for fault -
tolerance; in fact, it is the cause which is tolerated,
through processing its effects: a fauh is thus the ad-
judged cause of an error [Mor 83].
Furthermore, such a view is consistent with the dis~
tion between human and physical faults in that a com-
puting system is a human creation and as such any fault
is ultimately human-made since it represents human ina-
bility to master the complexity of the phenomena which
govern the behavior of a system. In an absolute way,
distinguishing between physical and human-made faults
(especially design faults affeeting the system) may be
considered as unnecessary; however it is of importance
when considering (current) methods and techniques for
procuring and validating dependability. If the above-
memioned recursion is not stopped, a fd isnothing
else than a failure of a system huving interacted or fn-
tiracting with the consiakred sywm; emunpks follow:

. a design fault is identilable as a designer

failure,

an interaai physical fault h due to a latent error
(the “physics refinability” community rarely
ehameterizes failures as “sudden, nonprexfktable
and irreversible”) originating from the hardware
production,

physical external faults and (human-made) in-
teraction faults are identilable” as failures die to
another design fault: the inability to foresee all
the situations the system will be faced with dur-
ing its operational life.

Up to now, a system has been considered as a
whole, emphasizing its externally pereeived behavior; a
definition of a system complying with this “black box”
view is: an entity having interacted, interacting, or li-
able to interaet with other entities, thus other systems.
The behavior is them simply what the system abes [Zie
76]. What enables it to do what it does is the WI’Uetureof
the system or its organization. Adopting the spirit of
[And 81], a system, from a structural (“white box”)
viewpoint, is a set of eonpnents bound together in ord-
er to interaet; a component is another system, ete. The
recursion stops when a system is considered as beiig
atomic any further internal structure cannot be dis-
eemed, or is not of interest and ean be ignored. The
term “component” has to be understood in a broad
sense: layers of a computing system as well as intra-

layer components; in addition, a component beiig itself
a system, it embodies the interrelation(s) of the com-
ponents of which it is composed.
From these deftitions, the discussion of whether
“failure” appk9 to a system or to a component is simply
irrelevant, since a component is itself a system. When
atomic systems are dealt with, the classical notion of
“elementary” failure comes naturally. It is also
noteworthy that from the preceding view of system
structure, the notions of serviee and specification apply
equally naturally to the components. This k especially
interesting in the design process, when using off-the-
shelf components, either hardvwe of software [Her 84]:
what is of actual interest is the semice they are able to
provide, not their detailed (internal) behavior.

This structured view enables fd pathofo~ to be
made more precise; the creation and action mechanisms
of faults, errors and failures may be summarized as fol-
lows:

1)

2)

5

A fdt creates one or several latent errors in the
component where it oeeurs; physied faults ean
direetly affeet the physical layer components
only, whereas human-made faults may affeet
any component.

The properties governing errors may be stated as
follows:

a) a latent error beeomes effeetive once it is aci



b)

c)

tivated,

an error may cycle between its latent and ef-
fective states,

an effective error may, and in general does,
prqwak S- one component to another;
b pwwtmg, anerror createsother (new)
errors.

From these properties it maybe dedueed that an
effective error within a component may originate
from:

. activation of a latent error within the same
CQmponent,

. an effeetive error propagating within the
same component or from another com-
ponent.

3) A component ftikre oeeurs Wht!Il an error af-

fects the service delivered (as a response to
request(s)) by the component.

4) These properties apply to any component of a
system.

In the preeeding, the intransitive form of “propagate”
was intentionally used an error does not propagate it-
self, it just propagates. Although “propagate” was r~
tained due to its wide use, better words would probably
be “spread”, or “breed”.

Three final comments:

i) A given error in a given component may be sub
sequent to different faults. For instance an er-
ror in a physical component (e.g. stuck at
ground voltage) may result from:

- a physical fault (e.g. threshold change)
acting at the physical layer comprMmg the
component,

an informationerror (e.g. erroneous mi-
croinstruction), caused by a design fault
(e.g. programmer mistake), propagating
top-down through the kyCTS and leading
to a short between two eireuit outputs for
a duration long enough to provoke a
short-circuit having the same effect as the
threshold change.

ii) It is noteworthy that the notion of failure mnnot
be separated from time granularity an error
Whieb “p9sscS through” * interface between the
system and its user(s) may or may not be viewed
as a failure by the system user(s) depending on
the time granularity of the lattq this remark is
of practical importance when considering the
solutions currently adopted for fault-tolerance as
a function of the application.

iii) lhe adjeetive “deliberate” in the definition of
hurmm-made interaction faults is clearly intend-

ed to include “undesired accesses” in the sense
of computer seeurity and privacy; however, the
eormsponding methods and techniques will not
be addressed in the sequel.

4. On fdt-avoihwe and Werance, error-removal and
forecasting

All the “how to’s” which appear in the basic d-
finitions are in fact goals which cannot be fully reaehed,
as all the corresponding activities are human activities,
and thus imperfect. These imperfections bring in
dependencies which explain why it is only the combined
utilization of the above methods (preferably at eaeh step
of the design and implementation proses) which ean
lead to a dependable computin~ system. These depen-
dencies can be sketched as follows: in spite of construc-
tion rules (imperfeet in order to be workable), faults@
cur; hence the need for error-removal; error-removal is
itself imperfect, as are the off-the-shelf components of
the system, henee the need for error-forecasting; our in-
creasing dependence on computing systems brings in
fault-tolerance, which in turn necessitates construction
rules, and thus error-remmml, error-forecasting, ete. It
has to be noted that the process is even more recursive
than it appears from the above current computer sys-
tems are so complex that their design and implementa-
tion need computerized tools in order to be cost-
effective (i a broad sense, iuchding the capability of

succeding within acceptable delays). These tools have
themselves to be dependable, and so on.

The preceding reasonin g ~~ why k the
given definitions error-removal and error-foreeasting
are gathered into validation. Classically speaking (see
e.g. [And 82, Avi 78, Lap 79]), fault-avoidance and
error-removal are ameqturdly gathered into fault-
prevention, error-forecasting being left with no definite
(eoneeptual) room. Validation is then limited to what
has been terlnd as W1’i&ltioll; in that case these tWO
terms are often associated, e.g. “V and V“ ~ 79], the
distinction being related to the difference t.Mwecn
“building the system right” (related to verification) and
“building the right system” (related to validation).
What is propased is simply an extension of this eoneept:
the answer to the question “am I building the right sys-
tem?” being complemented by “for how long will it be
right?”. Besides highlighting the need for validating the
procedures and mechanisms of fault-toleranee, consider-
ing error-removal and error-forecasting as two consti-
tuents of the same activity -- validation -- is moreover
of great interest as it enables a better understanding of
the notion of coverage, and thus of an important prob
km introduced by the above recursion(s): the vufiuirtion
~thevalialrtio n,orhow toreachconfidence in the
methods and tools used in building eonfidtxm in the
system. Coverage refers here to a measure of the
representativity of the situations to which the system is
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submitted during its vrdidation with respect to the actual
situations it will be confronted with during i@ operation-
al life. Fdy, “validation” stems from “validity”,
which encapsulates two notions:

. validity at a given moment, which relates to
error-removal,

validity for a given &uation, which relates to
error-forecasting.

5. On the dependirbility measures

The term “probability” has intentionally not been
employed in the given definitions, so as to keep the dis-
cussion informal, and to reinforce the physical signM-
eance of the defined measures. However, as the con-
sidered circumstances are non-det erministic, random
variables are associated with them, and the measures
which are dealt with are probabilities; this is strictly
speaking Wrre& a probability can be defined
mathematically as a measure.

Only two basic measures have been considered,
reliability and availability, whereas a third one, maintai-
nability is usually considered, which may be defied as
a measure of the continuous service interruption, or
equivalently, of the time to restoration. This measure is
no less important than those previously defined; it was
not introduced earlier because it may, at least eoneeptu-

ally, be deduced from the other two. E is noteworthy
that availability embodies the failure frequency and tie
accomplishment time duration at each alternation
accomplishment-interruption.

A system may not, and generally does not, al-
ways fail in the same way. This immediately brings in
the notion of the consequences of a failure upon the oth-
er systems with which the considered system in interact-
ing, i.e. its environment; several failure modes can gen-
erally be distinguished, ordered according to the in-
creasing severity of their amscquences. A special case
of great interest is that of systems which exhibit two
failure modes whose severities differ considerably

- benign failures, where the consequences are of
the same order of magnitude (generally in terms
of cost) as those of the service delivered in the
absence of failure,

. malign or castrophic failures, where the ~
qucnecs are not commensurable with those ef
the scMce delivered in the absence of failure.

Through grouping the states of service accomplishment
and seMce interruption subsequent to benign failures
into a safe state (in the sense of beiig free from dam-
age, not ffom danger), the generalization of reliability
leads to an additional measure: a measure of continu-
ous safeness, or equivalently, a measure of the time to
catastrophic failure, i.e. safety. It is worth noting that a

direct generalization of the availability, thus providiug a
measure of safeness with respeet to the alternation of
safeness and interruption after catastrophic failure,
would not provide a significant measure. When a catas-
trophic failure has occurred, the consequences are gen-
erally so important that system restoration is Em of
prime importance for at least the two following reasons:

. it comes second to repairing (in the broad sense
of the term, including legal aspects) the conse-
quences of the catastrophe,

- the lengthy period prior to being allowed to
operate the system again (investigation commis-
sions) would lead to meaningless numerical
values.

However, a “hybrid” reliability-availability measure can
be defined: a measure of the service accomplishment
with respect to the alternation of accomplishment and
interruption after benign failure. This measure is of in-
terest in that it provides a quantifkation of the system
availability before occurrence of a catastrophic failure,
and as such enables quantification of the wxalled
“reliability- (or availability-) safety trade-off”.

SUMMARY

What has been presented actually constitutes an
attempt to build a taxonomy of dependable computing.
The concepts introduced may be gathered into three
main clase9 of attributes:

the dependability impairments, which are un-
desired (not unexpected) circumstances causing
or resulting from un-dependability, whose defin-
ition is very simply derived from the definition
of dependability: reliance cannot, or will not, be
any more justifiably placed on the service,

the dependability means, which are the
methods, tools and solutions enabling a) to pro
tide with the abtity to deliver a seMce on
which reliance can be placed, and b) to reach
confidence in this ability,

the dependability measures, which enable the
service-quality resulting ffom the impairments
and the means opposing them to be appraised.

This (beginning of a) taxonomy is represented
below in the form of a tree.
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DEFINITIONS

Fault-tolerance is carried out by error pracess.
ing, which may be automatic or operator-assisted; two
constituent phases can be identified:

a)

b)

effective error processing, aimed at bringing the
effeetive error back to a latent state, if possible
before oeeurmnce of a failure,

latent error processing, aimed at ensuring that
the latent error does not become effeetive again.

Effeetive error processing may take on two
form%

- error recovery, where an error-free state is sub-
stituted for the. erroneous state; this substitution
may in turn make on two forms [And 81]:

backward error reeovery, where the er-
roneous state transformation eonaists of
bringing the system back to an already w
eupied state prior to the error becoming
effective,

forward error recovery, where the errone-
ous state transformation consists of find-
ing a new state (whieb never oeeurred be-
fore, or which has not occurred since the
same erroneous state occurred),

. error eompenaation, where the erroneous state
contains enough redundancy to enable the

delivery of an error-free serviee from the er-
roneous (iitemal) state.

When error reeovery is employed, the erroneous state
needs to be (urgently) identifkd as being erroneuus pri-
or to beiig transformed, which is the purpose of error
deteetion. On the other hand, eornpensation may be
applied systematically, even in the absence of effective
error(s), providing error masking (to the user(s)).

Latent error processing is carried out by making
the error passive and recont@uring the system if it is no
longer capable of delivering the same seMce as before.

If it is estimated that effective error processing
axdd directly remove the error, or more generally that
its likelihod of reeurring is low enough, then latent er-
ror processing is not undertaken. As long as latent er-
ror processing is not undertaken, the error is regarded
as being volatile; undertaking it implies that the error is
considered as solid.

Error processing is generally completed by
maintenance (except of course for non-maintained sys-
tems), aimed at removing latent errors. Maintenance
actions can be put into two ekmses:

- corrective maintenance, aimed at removing
those latent errors which have become effective
and have been promssed,

- preventive maintenance, aimed at removing la-
tent errors before they kcome effective in the
considered system; these errors can result from

l physical faults having occnned since the
last preventive maintenance actions,

. design faults having led to effective errors
in other similar sysiexna.

COMMENTS

1. On tht tolerated-fault classes

‘l%epreceding detlnitions apply to physical faults
as well as to design faultw the class(es) of faults which
can actually be tolerated depend(s) on the fault hy-
pothesis which is being considered in the design process,
and thus depend on the independency of rcxhmdanciea
with respect to the process of fault creation and activa-
tion.

It is noteworthy that fault-tolerance ia (also) a re-
cursive concept; it is essential that the mechanisms
aimed at implementing fault-tolerance be protected
against the faults which ean affect them voter replica-
tion, self-checking checkers [Car 68], “stable” memory
for recovery programs and data [Lam 81].
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2. On error processing

The goal of error processing is the preservation
of data integrity, which in turn requires the data am-
tained in the components involved in this preservation
to be consistent [Wen 78, Gra 78].

In effective error processing,

a) backward and forward error recovery are not
exelusive: backward recovery may be attempted
fret; if the effective error persists, forward
recovery may then be attempted,

b) in forward error reeovery, it is necessary to us-
sess the damage caused by the deteeted error, or
by errors propagated before deteetion; damage
assessment ean (ii principle) be ignored in the
case of backward recovery, provided that the
meclumisms enabling the transformation of the
erroneous state into an error-free state have not
been affeeted [And 81].

Some previous definitions of compensation consider it
within the context of interaction faults in distributed
systems only (see e.g. [Ran 78]); the given defition
clearly embodies more classical situations such as error-
eorreeting codes and majority voting. It is hoped that
the essential idea has been captured, its applieabfity be-
ing a matter of deftition of the system boundaries.

In error masking, the systematic appkmion of eompen-
satkm ensures in itself that any effeetive error (provided
of course it corresponds to the fault hypothesis of the
design pmeess) has been brought back to a latent state.
However, this ean at the same time correspond to a
redundancy deerease which is not known. So, praetieal
implementations of masking generally involve emr
deteetion, which enables compensation to be applied
again (in ease an effeetive error has been deteeted) in
order to cheek whether latent error processing has to be
undertaken or not. It is noteworthy that due to the
masking effeet, this seeond application of compensation
ean be performed within an acceptable delay, off-line
with respect to the current computation which was in
progress when the error became effective.

Of importance is the signaling of a component
failure to its users. This is often aeeounted for within
the framework of exceptins [And 81, Cri 82]. From a
strict terminology viewpoint, this naming may be regret-
ted in the sense that it may induce a contradiction with
the wish of seeing fault-toleranee as a natural feature
of computing systems, and as such introduced from the
very beginning of the design process (not as an “exeep
tional” attribute).

The definition given for the fact that an error
may be volatile or solid may lead to the feeling that this
is a subjective notion. Generally, latent Gmr process-
ing does not immediately follow effective error proceM-
ing, the delay resulting bakally from the fact that the
estimation of whether an error is volatile or solid is a
complex task involving identification of the fault class
which gave rise to the error. As different fault cksses
ean lead to very similar errors, this identification gen-
erally involves either waiting for a given lapse of time
or logging a given number of error oecurremms. ArI ad-
ditional, correlated, reason is that latent error process-
ing is in fact a voluntary system change, which, as such,
will lead to lowering the system redundancy. Thus, the
above-mentioned subjectivity in fact relates to the difti-
eulty in accurately identifying the class of fault having
caused an error, as well as diagnosing its effects.
Moreover, the given definition is consistent with

a)

b)

the difficulty in distinguishing the effects of a
temporary (transient or intermittent) physieid
fault from those of a design fault (see e.g. [Avi
82]),

the fact that the techniques for tolerating design
faults [Elm 72, Ran 75, Che 78] maybe awn as
attempts to make design-induced errors volatile.

The knowledge of some system properties may
limit the necessary amount of redundancy. Examples of
these properties are regularities of structural nature: er-
ror deteeting and correcting codes, robust data S-
tures [Tay 80], mukiproeessors and loud area networks
[Hay 76]. The faults which are tolerated are then
dependent upon the properties which are aeeounted for,
since they intervene directly in the fault hypotheses.

The operational time overhead neeessary for ef-
feetive error processing is radically different aeeording
to the two distinguished hrrns:

in error deteetion and reeovery, the time over-
head is longer when an error becomes effeetive
than when it was latent (it is then related to the
proviskm of reeovery points, thus in fact to
preparing for effective error processing),

. in error masking, the time overhead is always
the same, and in practice the duration of error
compensation is much shorter than error
recovery, due to the larger amount of available
(structural) redundancy.

This remark

a) is of high praetkxd importance in that it often
conditions the ehoiee of the adopted fault-
toleranee method with respect to the user time
granularity,



b) has introduced a relation between operational
time overhead and structural redundancy; more
generally, a redundant system always provides
redundant behavior, incurring at least some
operational time overhead the time overhead
may be small enough not to be perceived by the
user, which means only that the service is not
redundant; an extreme opposite form iS ‘time
redundancy” (redundant behavior obtained by
repetition) which needs to be at least initialized
by a structural redundancy, limited but still ex-
isting; roughly speaking, the more the structural
redundancy, the less the time overhead incurred.

3. On maintenance

The frontier between latent error processing and
corrective maintenance is relatively arbitrary; especially,
corrective maintenance may be considered as an (ulti-
mate) means of achieving fault-tolerance. However, the
given definitions were adopted for the ability to embody
(a) on-line or off-line maintainable fault-tolerant sys-
tems, as well as non-fault-tolerant systems, and (b)
preventive as well as corrective maintenance.

It is noteworthy within the present context that
the current discussions about the irrelevance of the use
of the term “maintenance” when applied to software
simply forget the etymology of the word: the asso&-

tion of maintenance with repairing hardware is actually
a (recent) deviation; associating “to maintain” with the
notion of service would enable this etymological mean-
ing to be revived, while at the same time removing the
very sourm of diseuwdon.

CONCLUSION

The contents of this paper are devoid of any “Ta-
blets of Stone” pretension the efforts undertaken are
only worthwhile in so far as they manage to embody as
wide as possible a range of concepts and therefore those
efforts have to keep abreast of technology. Naturally,
the associated terminology effort is not an end in itse~
words are only of interest in so far as they transmit
ideas, subject them to eritieism, and enable viewpoints
to be shared.

‘I%eindependence of the basic definitions with
respeet to any fault class should facilitate the bringiq
together of activities which are often considered as
separate, such as:

- VLS! testing and software testing,

- hardware reliability (with respeet to physical
faults) and software reliability (with respect to
design faults), to say nothing of hardware relia-

bility with respect to design faults,

- tolerance to physical faults and tolerance to
design faults,

- conqmter system security, safety and reliability.
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