
info@verificationacademy.com | www.verificationacademy.com

Introduction to the UVM
Object Oriented Programming

Ray Salemi

Senior Verification Consultant

Ray Salemi — Senior Verification Consultant

Introduction to

Advanced Verification
Introduction to

the UVM
© 2014 Mentor Graphics Corporation, all rights reserved.

Agenda

1. SystemVerilog for VHDL Engineers

2. Object Oriented Programming

3. SystemVerilog Interfaces

4. Packages, Includes, and Macros

5. UVM Test Objects

6. UVM Environments

7. Connecting Objects

8. Transaction Level Testing

9. The Analysis Layer

10. UVM Reporting

11. Functional Coverage with Covergroups

12. Introduction to Sequences

© 2014 Mentor Graphics Corporation, all rights reserved.

Object Oriented Programming

An Old Hardware Concept

© 2014 Mentor Graphics Corporation, all rights reserved.

Object Oriented Programming

An Old Hardware Concept

© 2014 Mentor Graphics Corporation, all rights reserved.

Object Oriented Programming

An Old Hardware Concept

© 2014 Mentor Graphics Corporation, all rights reserved.

Data Encapsulation in VHDL : Records

Rectangle Data Encapsulated

in Record

Memory is set aside when

variable is declared

© 2014 Mentor Graphics Corporation, all rights reserved.

Encapsulation in SystemVerilog

© 2014 Mentor Graphics Corporation, all rights reserved.

Terminology

Data members

Constructor – Only necessary if

initialization needed. Otherwise

use implicit constructor

Method

© 2014 Mentor Graphics Corporation, all rights reserved.

Differences in SystemVerilog Classes

Declared as class

Includes functions and

tasks as methods

Memory is not allocated

here

Memory allocated here

Method called to

determine area

© 2014 Mentor Graphics Corporation, all rights reserved.

Advantage of Classes: Extension

A Square is a Rectangle with

the same length and width

In this case, constructor (new)

calls parent’s constructor

We can use the method from

the parent

Leverage rectangle_t data and

methods

© 2014 Mentor Graphics Corporation, all rights reserved.

result_f reader

What Can I Do with Objects?

gen

(generator)

Behavioral

TLM

DUT

stim_f

gen

(generator)

stim_f result_f reader 3248

ValueField

result 3248

ValueField

resultDriver

RTL

or

Gate

clock

input_ready

Responder

result[15:0]b[7:0]

c[7:0]

d[7:0]

a[7:0]

result_ready

input

transaction

result

transaction

rst

Driver

RTL

or

Gate

clock

input_ready

Responder

result[15:0]result[15:0]b[7:0]b[7:0]

c[7:0]c[7:0]

d[7:0]d[7:0]

a[7:0]a[7:0]

result_ready

input

transaction

result

transaction

rst

3248

ValueField

result 3248

ValueField

resultDriver

RTL

or

Gate

clock

input_ready

Responder

result[15:0]b[7:0]

c[7:0]

d[7:0]

a[7:0]

result_ready

input

transaction

result

transaction

rst

Driver

RTL

or

Gate

clock

input_ready

Responder

result[15:0]result[15:0]b[7:0]b[7:0]

c[7:0]c[7:0]

d[7:0]d[7:0]

a[7:0]a[7:0]

result_ready

input

transaction

result

transaction

rst

© 2014 Mentor Graphics Corporation, all rights reserved.

result_f reader

What Can I Do with Objects?

gen

(generator)

Behavioral

TLM

DUT

stim_f

gen

(generator)

stim_f result_f reader 3248

ValueField

result 3248

ValueField

resultDriver

RTL

or

Gate

clock

input_ready

Responder

result[15:0]b[7:0]

c[7:0]

d[7:0]

a[7:0]

result_ready

input

transaction

result

transaction

rst

Driver

RTL

or

Gate

clock

input_ready

Responder

result[15:0]result[15:0]b[7:0]b[7:0]

c[7:0]c[7:0]

d[7:0]d[7:0]

a[7:0]a[7:0]

result_ready

input

transaction

result

transaction

rst

3248

ValueField

result 3248

ValueField

resultDriver

RTL

or

Gate

clock

input_ready

Responder

result[15:0]b[7:0]

c[7:0]

d[7:0]

a[7:0]

result_ready

input

transaction

result

transaction

rst

Driver

RTL

or

Gate

clock

input_ready

Responder

result[15:0]result[15:0]b[7:0]b[7:0]

c[7:0]c[7:0]

d[7:0]d[7:0]

a[7:0]a[7:0]

result_ready

input

transaction

result

transaction

rst

© 2014 Mentor Graphics Corporation, all rights reserved.

Randomizing Objects

© 2014 Mentor Graphics Corporation, all rights reserved.

Randomizing

© 2014 Mentor Graphics Corporation, all rights reserved.

Constraining Randomization

© 2014 Mentor Graphics Corporation, all rights reserved.

Add Constraints by Extending Classes

© 2014 Mentor Graphics Corporation, all rights reserved.

Summary

• SystemVerilog uses classes to encapsulate data and
functionality

• You can create families of classes. Child classes
inherit functionality from their parents.

• SystemVerilog can randomize objects. You can
control the randomization with constraints.

© 2014 Mentor Graphics Corporation, all rights reserved.

Next Session

1. SystemVerilog for VHDL Engineers

2. Object Oriented Programming

3. SystemVerilog Interfaces

4. Packages, Includes, and Macros

5. UVM Test Objects

6. UVM Environments

7. Connecting Objects

8. Transaction Level Testing

9. The Analysis Layer

10. UVM Reporting

11. Functional Coverage with Covergroups

12. Introduction to Sequences

© 2014 Mentor Graphics Corporation, all rights reserved.

info@verificationacademy.com | www.verificationacademy.com

Introduction to the UVM
Object Oriented Programming

Ray Salemi

Senior Verification Consultant

