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Object Oriented Programming 

An Old Hardware Concept 
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Data Encapsulation in VHDL : Records 

Rectangle Data Encapsulated 

in Record 

Memory is set aside when 

variable is declared 
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Encapsulation in SystemVerilog 

© 2014 Mentor Graphics Corporation, all rights reserved.  



Terminology 

Data members 

Constructor – Only necessary if 

initialization needed. Otherwise 

use implicit constructor 

Method 
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Differences in SystemVerilog Classes 

Declared as class 

Includes functions and 

tasks as methods 

Memory is not allocated 

here 

Memory allocated here 

Method called to 

determine area 
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Advantage of Classes: Extension 

A Square is a Rectangle with 

the same length and width 

In this case, constructor (new) 

calls parent’s constructor 

We can use the method from 

the parent 

Leverage rectangle_t data and 

methods 
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result_f reader 

What Can I Do with Objects? 
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Randomizing Objects 
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Randomizing 
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Constraining Randomization 
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Add Constraints by Extending Classes 
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Summary 

• SystemVerilog uses classes to encapsulate data and 
functionality 

 

• You can create families of classes.  Child classes 
inherit functionality from their parents. 

 

• SystemVerilog can randomize objects.  You can 
control the randomization with constraints. 
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