EGC442
Problem Set 9
Dr. Izadi
First Name: \qquad Last Name: \qquad

1) Refer to the refined multiplication hardware figure below

a) The refined multiplication hardware halves the width of the Multiplicand register from 64-bits to 32-bits.
© True
O False
b) The Multiplier register is removed and placed inside of the \qquad register.
\bigcirc Product
O Multiplicand
c) The ALU adds the 64-bit Product and 32-bit Multiplicand, and then stores the result into the Product register.
O True
O False
2) Consider the multiplication of $510 \times 12_{10}$, or $0101_{2} \times 1100_{2}$. Fill in the missing values for each of the steps labeled according to COD Figure 3.4 (The first multiplication algorithm ...). A copy of the multiplication algorithm figure is shown below to the right.

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	1100	00000101	00000000
	1: $0 \Rightarrow$ No operation	1100	00000101	00000000
	2: Shift left Multiplicand	1100	00001010	00000000
	3: Shift right Multiplier	0110	00001010	00000000
3	(a)	0110	00001010	00000000
	2: Shift left Multiplicand	0110	(b)	00000000
	3: Shift right Multiplier	(c)		00000000
4	(d)			00010100
	2: Shift left Multiplicand		00101000	00010100
	3: Shift right Multiplier	0001	00101000	00010100
	1a: 1 \Rightarrow Prod = Prod + Mcand	0001	00101000	(e)
	2: Shift left Multiplicand	0001	01010000	
	3: Shift right Multiplier	0000	01010000	

- 00010100
- 1a: 1 ==> Prod = Prod + Mcand
- 00111100
- 0011

1: $0==>$ No operation
(a)
(b)
(c)
(d)
(e)
3)
a. The multiplication hardware supports signed multiplication.

O True
O False
b. The 32-bit registers, called Hi and Lo, combine to form a 64-bit product register.

O True
\bigcirc False
c. The multiply (mult) instruction ignores overflow, while the multiply unsigned (multu) instruction detects overflow.
O True
O False
4)
a. A calculation that leads to a number being too large to represent is called \qquad .
overflow
O underflow
O a fraction
b. Increasing the size of the \qquad used to represent a floating-point number impacts the number's precision.
fraction
O exponent
d. A \qquad precision floating-point number is represented with two MIPS words.
O single
O double
5. Show the IEEE 754 binary representation of the number +0.375 ten in single precision:

```
- 112 / 2 or 0.011 2
- }12
- . }10000000000000000000000
3 / }8\mathrm{ or 3/2
1.1 (two }\times\mp@subsup{2}{}{-2
    0
- (-1)}\mp@subsup{)}{}{0}\times(1+.10000000000000000000 0000) \times 2(125-127)
```

Rewrite as a fraction
Rewrite as a binary number

Rewrite as normalized scientific notation
$\mathrm{S}=$?
Exponent = ?
Fraction $=$?
IEEE 754 binary single precision representation
6. Show the IEEE 754 binary representation of the number -0.9375 ten in double precision:

```
-1
    1022
- (-1)}\mp@subsup{)}{}{1}\times(1+.11100000\ldots0000)\times\mp@subsup{2}{}{(1022-1023)
- 1111 two / 24 or 0.1111 two
- . }11100000 ... 0000
- 15/16 or 15/24
1.111 two }\times\mp@subsup{2}{}{-1
```

Rewrite as a fraction
Rewrite as a binary number
Rewrite as normalized scientific notation
$\mathrm{S}=$?
Exponent $=$?
Fraction $=$?
IEEE 754 binary double precision representation
7. Convert the single precision binary floating-point representation to decimal.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	0	0	0	0	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

8. Add the following numbers using the floating-point addition algorithm. Assume 4 bits of precision.
a. $1.010 \times 2^{-3}+0.011 \times 2^{-3}=$?

- 1.101
© 1.101×2^{-6}
© 1.101×2^{-3}
b. $1.001 \times 2^{-4}+1.000 \times 2^{-6}=$?
o 10.001×2^{-4}
© 1.011×2^{-4}
c. $1.000 \times 2^{3}+0.011 \times 2^{5}=$?

C 1.010×2^{4}
C 0.101×2^{5}
C 10.001×2^{5}
9. Multiply $-14_{\text {ten }}$ and $-0.25_{\text {ten }}$, or $-1.110 \times 2^{3} \times-1.000 \times 2^{-2}$. Assume 4 bits of precision.

```
-1.110000
-1.110000}\mp@subsup{0}{\mathrm{ two }}{\times}\times\mp@subsup{2}{}{1
- 1.1100 two * 2 }\mp@subsup{}{}{1
- 3+(-2)=1
- 2
- 3.5ten
```

Adding the non-biased exponents of the operands
Multiply the significands:
$1.110 \times 1.000=$?
Product $=1.110000 \times$?
Normalize the product
Round the product
Set the sign of the product: ? $1.1100_{\text {two }} \times 2^{1}$
$-14_{\text {ten }} \times-0.25_{\text {ten }}=$?

