| EGC442      | Problem Set 9 | Dr. Izadi |
|-------------|---------------|-----------|
| First Name: | Last Name:    |           |

1) Refer to the refined multiplication hardware figure below



- a) The refined multiplication hardware halves the width of the Multiplicand register from 64-bits to 32-bits.
- O True

© False

- b) The Multiplier register is removed and placed inside of the \_\_\_\_\_ register.
- © Product
- <sup>O</sup> Multiplicand
  - c) The ALU adds the 64-bit Product and 32-bit Multiplicand, and then stores the result into the Product register.
- © <sub>True</sub>
- O False

Consider the multiplication of 5<sub>10</sub> × 12<sub>10</sub>, or 0101<sub>2</sub> × 1100<sub>2</sub>. Fill in the missing values for each of the steps labeled according to COD Figure 3.4 (The first multiplication algorithm ...). A copy of the multiplication algorithm figure is shown below to the right.

| Iteration | Step                        | Multiplier | Multiplicand | Product   |  |  |  |  |
|-----------|-----------------------------|------------|--------------|-----------|--|--|--|--|
| 0         | Initial values              | 1100       | 0000 0101    | 0000 0000 |  |  |  |  |
| 1         | 1: 0 ⇒ No operation         | 1100       | 0000 0101    | 0000 0000 |  |  |  |  |
|           | 2: Shift left Multiplicand  | 1100       | 0000 1010    | 0000 0000 |  |  |  |  |
|           | 3: Shift right Multiplier   | 0110       | 0000 1010    | 0000 0000 |  |  |  |  |
| 2         | (a)                         | 0110       | 0000 1010    | 0000 0000 |  |  |  |  |
|           | 2: Shift left Multiplicand  | 0110       | (b)          | 0000 0000 |  |  |  |  |
|           | 3: Shift right Multiplier   | (c)        |              | 0000 0000 |  |  |  |  |
| 3         | (d)                         |            |              | 0001 0100 |  |  |  |  |
|           | 2: Shift left Multiplicand  |            | 0010 1000    | 0001 0100 |  |  |  |  |
|           | 3: Shift right Multiplier   | 0001       | 0010 1000    | 0001 0100 |  |  |  |  |
| 4         | 1a: 1 ⇒ Prod = Prod + Mcand | 0001       | 0010 1000    | (e)       |  |  |  |  |
|           | 2: Shift left Multiplicand  | 0001       | 0101 0000    |           |  |  |  |  |
|           | 3: Shift right Multiplier   | 0000       | 0101 0000    |           |  |  |  |  |



- 0001 0100
- 1a: 1 ==> Prod = Prod + Mcand
- **0011 1100**
- 0011
- 1: 0 ==> No operation

| (a) |  |  |
|-----|--|--|
| (b) |  |  |
| (c) |  |  |
| (d) |  |  |
| (e) |  |  |

## 3)

- a. The multiplication hardware supports signed multiplication.
- © True
- © False

b. The 32-bit registers, called Hi and Lo, combine to form a 64-bit product register.

C <sub>True</sub>

© False

c. The multiply (mult) instruction ignores overflow, while the multiply unsigned (multu) instruction detects overflow.

<sup>O</sup> True

© False

4)

a. A calculation that leads to a number being too large to represent is called \_\_\_\_\_.

© overflow

© underflow

<sup>©</sup> a fraction

b. Increasing the size of the \_\_\_\_\_ used to represent a floating-point number impacts the number's precision.

<sup>○</sup> fraction

© exponent

d. A \_\_\_\_\_ precision floating-point number is represented with two MIPS words.

- <sub>single</sub>
- O double

5. Show the IEEE 754 binary representation of the number +0.375ten in single precision:



Rewrite as a fraction

Rewrite as a binary number

Rewrite as normalized scientific notation

S = ? Exponent = ? Fraction = ? IEEE 754 binary single precision representation

6. Show the IEEE 754 binary representation of the number -0.9375ten in double precision:

![](_page_3_Picture_3.jpeg)

Rewrite as a fraction

Rewrite as a binary number

Rewrite as normalized scientific notation

S = ?

Exponent = ?

Fraction = ?

IEEE 754 binary double precision representation

7. Convert the single precision binary floating-point representation to decimal.

| 31    | 30        | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11    | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------|-----------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-------|----|---|---|---|---|---|---|---|---|---|---|
| 0     | 1         | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 bit | bit 8 bit |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 23 bi | t  |   |   |   |   |   |   |   |   |   |   |

8. Add the following numbers using the floating-point addition algorithm. Assume 4 bits of precision.

a.  $1.010 \times 2^{-3} + 0.011 \times 2^{-3} = ?$   $\bigcirc$  1.101  $\bigcirc$  1.101 x 2^{-6}  $\bigcirc$  1.101 x 2^{-3} b.  $1.001 \times 2^{-4} + 1.000 \times 2^{-6} = ?$   $\bigcirc$  10.001  $\times 2^{-4}$   $\bigcirc$  1.011  $\times 2^{-4}$ c.  $1.000 \times 2^3 + 0.011 \times 2^5 = ?$   $\bigcirc$  1.010  $\times 2^4$   $\bigcirc$  0.101  $\times 2^5$  $\bigcirc$  10.001  $\times 2^5$ 

9. Multiply -14ten and -0.25ten, or -1.110  $\times$  2<sup>3</sup>  $\times$  -1.000  $\times$  2<sup>-2</sup>. Assume 4 bits of precision.

![](_page_4_Figure_3.jpeg)

Adding the non-biased exponents of the operands

Multiply the significands:  $1.110 \times 1.000 = ?$ 

Product =  $1.110000 \times ?$ 

Normalize the product

Round the product

Set the sign of the product: ?  $1.1100_{two} \times 2^1$ 

 $-14_{ten} \times -0.25_{ten} = ?$