Last Name: _____

First Name:

1) Integers can be represented as bits.

^C True

False

2) Instructions can be represented as bits.

^C True

False

Consider the subtraction of base ten numbers 5 - 4 using 32-bit binary numbers, and achieved by adding 5 with the two's complement of 4:

- 3) dcba
- ° 1011
- ° 1100
- 4) zyxw
- 0000
- 0001

5) If a 33rd sum bit, s, existed on the left, what value would that bit get?

0

 \circ_1

Indicate if the binary operation resulted in overflow.

6)

0 1 1 0 ... + 0 1 1 1 ...

1 1 0 1 ... Overflow

No overflow

```
7)
 1100...
+ 1 1 0 1 ...
-----
 1001...
Overflow
No overflow
 8)
 0001...
+ 1 0 0 1 ...
-----
 1010...
Overflow
No overflow
Consider 13_{ten} \times 6_{ten}, or 1101_{two} \times 0110_{two}. Fill in the missing values.
      1 1 0 1 (Multiplicand)
     0110 (Multiplier)
X
     ???? (Partial product 1)
    ???? (Partial product 2)
            (Partial product 3)
   ????
             (Partial product 4)
+ ????
 ?????? (Product)
 9) Partial product 1
○ 0000
<sup>O</sup> 1101
 10) Partial product 2
○ 0000
° 1101
 11) Partial product 3
○ 0000
° 1101
 12) Partial product 4
○ 0000
<sup>O</sup> 1101
```

13) Product
11010
1001110
14) The largest product resulting from a multiplication of a 7-bit multiplier is _____ bits long.
14
35

For the first multiplication algorithm, as depicted the following diagram

15) Each step of the multiplication algorithm shifts the Multiplier register 1 bit to the right left
16) The Multiplier register isbits wide. © 32 © 64
17) Each step of the multiplication algorithm shifts the Multiplicand register 1 bit to the right left
18) The Multiplicand register isbits wide. © 32 © 64
19) The Product register isbits wide. © 32 © 64 © 128

20) Each iteration of the multiplication algorithm consists of base	ic steps.
© 3	
° 7	
° 32	