First Name: \qquad Last Name: \qquad

1) A main program will call a procedure Power for computing x^{y}. Currently, x is in $\$ s 0, y$ is in $\$ \mathrm{~s} 1$. How might the program pass the parameter values to Power?
O add \$a0, \$s0, \$zero
add \$a1, \$s1, \$zero
\bigcirc add $\$ \mathrm{~s} 0, \$ \mathrm{a} 0$, \$zero
add \$s1, \$a1, \$zero
\bigcirc add $\$ \mathrm{v} 0, \$ \mathrm{~s} 0$, \$zero
add \$v1, \$s1, \$zero
2) A first part of a main program calls procedure Power to compute x^{y}, where x is in $\$ s 0, y$ is in $\$ \mathrm{~s} 1$. Later, the program is to call Power again, but this time x is in $\$ \mathrm{~s} 3$ and y is in \$s7. How might the program pass the parameter values to Power?
Copy \$s3 to \$a0, and \$s7 to \$a1.
O Not possible; x and y must be in $\$ \mathrm{~s} 0$ and $\$ \mathrm{~s} 1$.
3) A main program calls a Power procedure using the instruction: jal Power. That instruction is at address 1000. What happens to \$ra?
O Nothing; jal is unrelated to \$ra.
\$ra is set to 1000 .
O $\$$ ra is set to 1004 .
4) A procedure Power computes $\$ \mathrm{a} 0$ to the power of $\$ \mathrm{a} 1$. In which register should Power write the result before returning?

- \$a0
- \$v0
- $\$ \mathrm{~s} 0$

5) A procedure Power computes $\$ \mathrm{a} 0$ to the power of $\$ \mathrm{a} 1$. How should the procedure jump back to the next instruction in the caller?
O jr Caller
O jr \$ra
\bigcirc jal \$ra
6) The stack is a region in the set of registers.

O True
\bigcirc False
7) The jal instruction copies registers to the stack.

O True
O False
8) A procedure should copy all of registers $\$ \mathrm{tt0}-\$ \mathrm{t} 9$ and $\$ \mathrm{~s} 0-\$ \mathrm{~s} 7$ to the stack, before executing the procedure's computations.
© True
O False
9) If a procedure will update registers $\$ \mathrm{~s} 0, \$ \mathrm{~s} 1, \$ \mathrm{~s} 2$, and $\$ \mathrm{~s} 3$, the procedure should make room on the stack by adding 16 to \$sp.
© True
O False
10) Upon computing a value to return, the procedure might copy that value into register $\$ \mathrm{v} 0$.
© True
O False
11) MIPS allows a procedure to modify registers $\$ \mathrm{\$ t0}-\$ \mathrm{t} 9$ without saving those registers to the stack and restoring those registers upon returning.

- True

False
12) Write a MIPS subroutine to carryout the following function.

```
temp = v[k];
v[k] = v[k + 1];
v[k + 1] = temp;
```

Assume base address of v is register \$a1, k is in register \$a2, and temp is assigned to $\$ \mathrm{~s} 1$.

