First Name: \qquad Last Name: \qquad

1. Voltage $=4 \mathrm{~V}$, frequency $=1 \mathrm{GHz}$, and dynamic power $=3 \mathrm{~W}$. Frequency is increased to 6 GHz . What is the new dynamic power?
2. Voltage $=4 \mathrm{~V}$, frequency $=1 \mathrm{GHz}$, and dynamic power $=3 \mathrm{~W}$. Voltage is decreased to 2 V . What is the new dynamic power?
3. Processor A has 75% of the capacitive load of processor B. Processor A also has a 20% voltage reduction and 10% shrink in frequency. What is the relative impact on dynamic power?
© $0.75 \times 0.802 \times 0.90=0.432$

- $0.75 \times 0.202 \times 0.10=0.003$

C $0.75 \times 0.802 \times 0.90=0.432 \mathrm{~V}$
4. Which improvement has a bigger impact on power?

- 25% reduction in voltage
. 25% reduction in frequency switching

5. In the past 20 years, voltages have decreased from 5 V to 1 V . Why don't manufacturers continue to lower voltages to reduce power consumption?
O Further lowering of voltage results in transistor leakage.
O Voltage has no impact on power
6. Over the past 30 years, processor frequencies have continued to increase.

O True
O False
7. From the mid-1980s to early-2000s, processor performance improved each year at an average of 52%.
\bigcirc True
O False
8. Growth in processor performance slowed in 2002.
© True
\bigcirc False
9. Power was a factor in the slowing of processor performance growth.

O True
O False
10. Manufacturers continue to design single processor systems and increase processor performance through new technology-driven improvements.
O True
O False
11. As computing systems move to multicore microprocessors, programmers \qquad to obtain performance benefits.
O don't need to change any code
O need to rewrite their programs
12. Parallel programming seeks to improve program \qquad .
\bigcirc pipelining
O performance
O correctness
13. How should programmers write code to maximize the benefits of parallel programming?

O Run all program tasks on a single processor
R Run programs in a round-robin fashion to ensure even wear of processors
O Divide a program into sub-tasks so all processors run about the same amount of time
14. Parallel programming becomes more difficult as the number of processor cores increases.

O True
O False
15. A program runs in 100 seconds. Multiply operations are responsible for 30 of those seconds. If extensive designer effort is applied such that multiply operations are made to run 2 times faster, what is the program's new execution time?
16. If some aspect of a computer accounts for 50% of program execution time, what is the limit on how many times faster programs can run if engineers focus on improving that aspect?
17. Google's warehouse scale computer uses 5% of the peak power when running at 10% utilization.
O True
O False
18. Designers must choose between energy and performance. If a computer is designed for improved performance, then the computer's energy consumption will increase.
O True
O False
19. Consider the following performance measurements for a program:

Measurement	Computer A	Computer B
Instruction count	10 billion	8 billion
Clock rate	4 GHz	4 GHz
CPI	1.0	1.1

a. Which computer has the higher MIPS rating?

Computer A
Computer B
b. Which computer is faster for that program?

- Computer A
- Computer B

20. The most reliable method to evaluate performance is execution time.
© True
O False
21. Software developers do not need an understanding of hardware to write efficient programs.

O True
\bigcirc False
22. Power limitations have forced computer designers to exploit parallelism to improve system performance.
O True
\bigcirc False
23. An instruction set is a particular program provided in the language of a computer.

O True
O False
24. The instruction sets of different computers are quite similar to one another.

O True
O False
25. Instructions, as well as data, can be stored in memory as numbers.

O True
O False

Given: $\mathrm{b}=2, \mathrm{c}=5, \mathrm{~d}=1$.
26. add a, b, c , Final value of a is \qquad .
27.
add t, d, c
add a, t, c
Final value of a is \qquad
28.
sub t, c, b add a, t, d
Final value of a is \qquad .
29. Order the assembly instructions to calculate the expression: $a=b+c+d-e$

```
- add t0, b, c
add t1, t0, d
- sub a,t1,e
```

1
2
3
30. For a given function, which programming language likely takes the most lines of source code?

```
- Java
C
MIPS assembly language
```

1 (Requires most lines)
2
3 (Requires fewest lines)
31. Indicate whether each name refers to a MIPS register.
a. \$s3

- Yes

O No
b. $\$ \mathrm{~s} 9$

- Yes

O No
c. $\$ \mathrm{t} 9$

O Yes
\bigcirc No
d. a 2

O Yes
\bigcirc No
e.\$zero

- Yes

O No
f. \$one

- Yes
\bigcirc No
h. Memory[0]
- Yes

O No

