EGC442	Problem Set 4	Dr. Izadi
First Name:	Last Name:	

- 1. Voltage = 4 V, frequency = 1 GHz, and dynamic power = 3 W. Frequency is increased to 6 GHz. What is the new dynamic power?
- 2. Voltage = 4 V, frequency = 1 GHz, and dynamic power = 3 W. Voltage is decreased to 2 V. What is the new dynamic power?
- 3. Processor A has 75% of the capacitive load of processor B. Processor A also has a 20% voltage reduction and 10% shrink in frequency. What is the relative impact on dynamic power?
- © 0.75×0.802×0.90=0.432
- © 0.75×0.202×0.10=0.003
- © 0.75×0.802×0.90=0.432V
- 4. Which improvement has a bigger impact on power?
- © 25% reduction in voltage
- [©] 25% reduction in frequency switching
- 5. In the past 20 years, voltages have decreased from 5 V to 1 V. Why don't manufacturers continue to lower voltages to reduce power consumption?
- ^O Further lowering of voltage results in transistor leakage.
- Voltage has no impact on power
- 6. Over the past 30 years, processor frequencies have continued to increase.
- ^O True
- © False

7. From the mid-1980s to early-2000s, processor performance improved each year at an average of 52%.

- ^ℂ True
- © False
- 8. Growth in processor performance slowed in 2002.
- ^O True
- [©] False

9. Power was a factor in the slowing of processor performance growth.

^C True

[©] False

10. Manufacturers continue to design single processor systems and increase processor performance through new technology-driven improvements.

○ True

© False

11. As computing systems move to multicore microprocessors, programmers _____ to obtain performance benefits.

- $^{\circ}$ don't need to change any code
- $^{\circ}$ need to rewrite their programs

12. Parallel programming seeks to improve program _____.

- © pipelining
- © performance
- © correctness

13. How should programmers write code to maximize the benefits of parallel programming?

- [©] Run all program tasks on a single processor
- [©] Run programs in a round-robin fashion to ensure even wear of processors
- ^O Divide a program into sub-tasks so all processors run about the same amount of time

14. Parallel programming becomes more difficult as the number of processor cores increases.

- ^O True
- © False

15. A program runs in 100 seconds. Multiply operations are responsible for 30 of those seconds. If extensive designer effort is applied such that multiply operations are made to run 2 times faster, what is the program's new execution time?

16. If some aspect of a computer accounts for 50% of program execution time, what is the limit on how many times faster programs can run if engineers focus on improving that aspect?

17. Google's warehouse scale computer uses 5% of the peak power when running at 10% utilization.

^O True

^ℂ False

18. Designers must choose between energy and performance. If a computer is designed for improved performance, then the computer's energy consumption will increase.

- _{True}
- © False

19. Consider the following performance measurements for a program:

Measurement	Computer A	Computer B
Instruction count	10 billion	8 billion
Clock rate	4 GHz	4 GHz
СРІ	1.0	1.1

- a. Which computer has the higher MIPS rating?
 - [©] Computer A
 - Computer B
- b. Which computer is faster for that program?
 - Computer A
 - C Computer B
- 20. The most reliable method to evaluate performance is execution time.
- © True
- © False
- 21. Software developers do not need an understanding of hardware to write efficient programs.
- [©] True
- © False

22. Power limitations have forced computer designers to exploit parallelism to improve system performance.

- ^O True
- © False

23. An instruction set is a particular program provided in the language of a computer.

○ True

© False

24. The instruction sets of different computers are quite similar to one another.

© True

© False

25. Instructions, as well as data, can be stored in memory as numbers.

- © True
- © False

Given: b = 2, c = 5, d = 1.

```
26. add a, b, c , Final value of a is _____.
```

27.

1

2

3

add t, d, c add a, t, c Final value of a is _____

28. sub t, c, b add a, t, d Final value of a is _____.

29. Order the assembly instructions to calculate the expression: a = b + c + d - e

30. For a given function, which programming language likely takes the most lines of source code?

1 (Requires most lines)

2

```
3 (Requires fewest lines)
```

31. Indicate whether each name refers to a MIPS register.

a. \$s3

- © Yes
- ◎ _{No}
- b. \$s9
- © Yes
- © _{No}
- c. \$t9
- © Yes
- © _{No}
- d. a2
- © Yes
- $^{\circ}$ No
- e.\$zero
- O Yes
- © No
- f. \$one
- O Yes
- © _{No}
- h. Memory[0]
- O Yes
- \circ No