EGC442	Problem Set 3	Dr. Izadi
First Name:	Last Name:	

- 1. A particular processor has a clock rate of 1 GHz. The clock thus ticks one billion times per second.
- C True
- C False
- 2. A clock rate of 1 GHz corresponds to a period of 1 nanosecond, which is 1×10^9 seconds.
- C True
- C False
- 3. Computer C's performance is 4 times as fast as the performance of computer B, which runs a given application in 28 seconds. How long will computer C take to run that application?
- 4. Our favorite program runs in 10 seconds on computer A, which has a 2 GHz clock. We are trying to help a computer designer build a computer, B, which will run this program in 6 seconds. The designer has determined that a substantial increase in the clock rate is possible, but this increase will affect the rest of the CPU design, causing computer B to require 1.2 times as many clock cycles as computer A for this program.
 - a. What is the CPU clock cycles for computer A?
 - \circ 2×10⁹cyclessec
 - \circ 20 x 10⁹ cycles
 - © 10 sec
 - b. Computer B's performance is improved by reducing the _____.
 - ^C number of clock cycles required to execute the program
 - C length of a clock cycle

- 5. Suppose we have two implementations of the same instruction set architecture. Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some program, and computer B has a clock cycle time of 500 ps and a CPI of 1.2 for the same program.
 - a. How does one know that each computer executes the same number of instructions for the program?
 - ^C All computers use the same number of instructions for a given program.
 - ^O Both computers use the same instruction set architecture.
 - ^C Both computers use the same implementation.
 - b. Which computer has a faster clock?
 - C Computer A
 - C Computer B
 - c. Which computer requires fewer clock cycles to execute a single instruction?
 - C Computer A
 - C Computer B
 - d. If Computer A executes 1000 instructions for the program, what is the program's CPU time on Computer A?
 - ^C 1000 instr * 2.0 cycle/instr * 250 ps/cycle = 500,000 ps.
 - ^C 1000 instr * 1.2 cycle/instr * 500 ps/cycle = 600,000 ps.
 - e. If Computer A executes 1000 instructions for the program, how many instructions does Computer B execute for the program?
 - ° 1000
 - C 1000 * 1.2 = 1200
 - 1000 * 2.0 = 2000
 - f. For a particular program, Computers A and B execute 2000 instructions. A's CPU time is 2000 * 2.0 * 250 = 1,000,000 ps. B's is 2000 * 1.2 * 500 = 1,200,000 ps. How much faster is Computer A than B?
 - C 1.2

° _{200,000}

- g. Computer A is better than Computer B.
- O Yes
- Unclear

6. A compiler designer is trying to decide between two code sequences for a particular computer. The hardware designers have supplied the following facts:

	CPI for each instruction class		
	А	В	С
СРІ	1	2	3

For a particular high-level language statement, the compiler writer is considering two code sequences that require the following instruction counts:

Code sequence	Instruction counts for each instruction class			
	А	В	С	
1	2	1	2	
2	4	1	1	

- a. Instruction class _____ requires the largest number of cycles per instruction.
- b. Code sequence 2 executes _____ instructions.
- c. Code sequence 2 requires _____ CPU clock cycles.
- d. Assume a new code sequence 3 contains the following instruction counts for each instruction class. What is code sequence 3's CPU clock cycles?

Code sequence	Instruction counts for each instruction class		
	А	В	С
3	10	4	6

e. Assume a new code sequence 3 contains the following instruction counts for each instruction class. What is code sequence 3's CPI?

- 7. Assume CPI and clock cycle time remain constant. Reducing the instruction count will reduce the program's execution time.
 - C _{True}
 - C False
- 8. For a given number of instructions, assume CPI is increased by 20%, and clock cycle time is decreased by 10%. The program execution time decreases.
 - True
 - C False