8) Find the AMAT for a processor with a 2 ns clock cycle time, a miss penalty of 40 clock cycles, a miss rate of 0.05 misses per instruction, and a cache access time (including hit detection) of 1 clock cycle. Assume that the read and write miss penalties are the same and ignore other write stalls.

9) I	f the clock rate is increased without changing the memory system, the fraction of execution
tim	e due to cache misses relative to total execution time.
0	increases
0	decreases
10)	AMAT considers the average time to access data for
0	misses
0	both hits and misses

11) Design a direct-mapped cache with the following parameters:

Address size: 32 bitsCache data size: 2 KBCache block: 2 word

12) The following is a series of address references given as word addresses: 9, 4, 20, 4, 8, 15, 5, 19, 4, 20, 4, 22, 7, 17, 10. Assume direct map with **a word size of 1 byte, a block size of 2 words and a total size of 16** words. Show the hits and misses and final cache contents. Show the final cache content.

Location	Hit/Miss?
9	
4	
20	
4	
8	
15	
5	
19	
4	
20	
4	
22	
7	

- 13) Assume an instruction cache miss rate for an application is 2% and the data cache miss rate of 4%. Assume further that our CPU has a CPI of 2 without any memory stalls and the miss penalty is 40 cycles for all misses.
- a. Determine the overall CPI with the indicated misses, provided the frequency of all loads and stores in the application is 20%.

b. Suppose we increase the performance of the machine in the above example by reducing its CPI from 2 to 1 via pipelining. Determine the new overall CPI.				