First Name: Last Name: \qquad

1) Bob is building a fence behind his house. He uses a hammer to attach a board to the rail. Bob then measures and cuts the next board.

The likelihood that Bob will need the hammer again is an example of \qquad locality. spatial
C
temporal
2) Bob is building a fence behind his house. He grabs a hammer from the garage. Bob will likely need additional tools stored in the garage, so Bob also grabs nails, a shovel, and a level.

The likelihood that Bob will need resources stored together in the garage is an example of
\qquad locality.
spatial
temporal
3) Given the following loop, the high likelihood of accessing multiple elements within array A is an example of \qquad locality.
while $(\mathrm{i}<10)$ \{
$\mathrm{A}[\mathrm{i}]=\mathrm{A}[\mathrm{i}]+2$;
$\mathrm{i}=\mathrm{i}+1$;
\}
spatial
temporal
4) Given the following loop, the high likelihood of accessing $i=i+1$ repeatedly is an example of \qquad locality.
while $(\mathrm{i}<10)$ \{
$\mathrm{A}[\mathrm{i}]=\mathrm{A}[\mathrm{i}]+2$;
$\mathrm{i}=\mathrm{i}+1$;
\}
spatial
temporal
5) Instructions may exhibit temporal locality, but not spatial locality.

True
False
6) Data may exhibit spatial locality, but not temporal locality.

C
True
C
False
7) A memory hierarchy is composed of an upper level and a lower level. Data is requested by the processor. 9 out of 10 requests find the data in the upper level and returns the data in 0.4 ns . The remaining requests require 0.7 ns to return the data.

Determine the corresponding values for the upper level memory.

```
- 0.4
    0.9
    0.1
    0.7
```

Hit rate
Miss rate
Hit time
Miss penalty

Select the memory technology that most closely matches the statements below.
8)Used to implement the memory levels closest to the processor.

C
SRAM
C
DRAM
9)Has fewer transistors per bit of memory.

C SRAM
C DRAM
10)Requires a periodic refresh.

C SRAM
C DRAM
\qquad
11)Magnetic disk access times.

Rotational latency

Transfer time
Seek time

The time required to move the head to the desired track.
The time required for the desired sector to rotate under the head.
The time required to transfer a block of bits.
A magnetic disk is a type of \qquad .
C mechanical device
C semiconductor memory
12)Writes to the same location in a \qquad can wear out memory bits.
C flash memory
C magnetic disk
13)Memories in personal mobile devices are typically \qquad .
© flash memory
C magnetic disk
14)In a magnetic disk, sequential block numbers are placed next to one another on a track. Ex: Block 207 is placed after block 206.
C True
C False
15)Magnetic disks are volatile.

C
True
C False
Determine the cache index given the direct-mapped cache size and block address.
Type the cache index as a binary value. Ex: 110
16)Direct-mapped cache size: 8 one-word blocks, Block address: 00011_{2}
17)Direct-mapped cache size: 8 one-word blocks, Block address: 10101_{2}
18)Direct-mapped cache size: 8 one-word blocks, Block address: 10000101_{2}
19)Direct-mapped cache size: 16 one-word blocks, Block address: 00101100_{2}
20)A request to address $00101_{\text {two }}$ results in a cache \qquad .

Index	V	Tag	Data
000	N		
001	Y	$00_{\text {two }}$	Memory $\left(00001_{\text {two }}\right)$
010	N		
011	Y	$11_{\text {two }}$	Memory $\left(11011_{\text {two }}\right)$
100	Y	$11_{\text {two }}$	Memory $\left(11100_{\text {two }}\right)$
101	N		
110	Y	$01_{\text {two }}$	Memory $\left(01110_{\text {twoo }}\right)$
111	Y	$10_{\text {two }}$	Memory $\left(10111_{\text {two }}\right)$

C hit
C miss
21)After a request to address 00110_{two}, the tag in cache block 110_{two} is \qquad two.

Index	v	Tag	Data
000	N		
001	Y	$00_{\text {two }}$	Memory (00001 ${ }_{\text {tao }}$)
010	N		
011	N		
100	Y	$11_{\text {two }}$	Memory ($11100_{\text {two }}$)
101	N		
110	N		
111	Y	$10_{\text {two }}$	Memory ($10111_{\text {tao }}$)
C 10			
C 00			

22)A request to address 00001_{two} results in a cache \qquad .

Index	V	Tag	Data
000	Y	$01_{\text {two }}$	Memory $\left(01000_{\text {two }}\right)$
001	Y	$11_{\text {two }}$	Memory $\left(11001_{\text {two }}\right)$
010	Y	$01_{\text {two }}$	Memory $\left(01010_{\text {two }}\right)$
011	Y	$00_{\text {two }}$	Memory $\left(00011_{\text {two }}\right)$
100	N		
101	N		
110	N		
111	N		

C hit
C miss
23)After a request to address 00101_{two}, the data in cache block 101_{two} is Memory(\qquad two).

Index	V	Tag	Data
000	Y	$01_{\text {two }}$	Memory $\left(01000_{\text {two }}\right)$
001	N		
010	N		
011	Y	$00_{\text {two }}$	Memory $\left(00011_{\text {too }}\right)$
100	N		
101	Y	$11_{\text {two }}$	Memory $\left(11101_{\text {two }}\right)$
110	Y	$00_{\text {two }}$	Memory $\left(00110_{\text {two }}\right)$
111	N		

C 11101

- 00101
24)A request to address 10111_{two} results in a cache \qquad .

Index	V	Tag	Data
000	N		
001	N		
010	Y	$11_{\text {two }}$	Memory (11010 $\left.{ }_{\text {two }}\right)$
011	N		
100	Y	$10_{\text {two }}$	Memory (10100 $\left.\mathrm{tan}_{\text {to }}\right)$
101	N		
110	Y	$00_{\text {two }}$	Memory $\left(00110_{\text {two }}\right)$
111	Y	$10_{\text {two }}$	Memory $\left(10111_{\text {two }}\right)$

${ }^{C} \begin{aligned} & \text { hit } \\ & \text { miss }\end{aligned}$
25)After a request to address 10000_{two}, the data in cache block 000_{two} \qquad .

Index	V	Tag	Data
000	Y	$10_{\text {two }}$	Memory (10000 $\left.0_{\text {two }}\right)$
001	Y	$00_{\text {two }}$	Memory $\left(00001_{\text {two }}\right)$
010	Y	$11_{\text {two }}$	Memory (11010 $\left.0_{\text {two }}\right)$
011	Y	$11_{\text {two }}$	Memory (11011 $\left.1_{\text {two }}\right)$
100	Y	$10_{\text {two }}$	Memory (10100 $\left.0_{\text {two }}\right)$
101	Y	$00_{\text {two }}$	Memory $\left(00101_{\text {two }}\right)$
110	Y	$00_{\text {two }}$	Memory $\left(00110_{\text {two }}\right)$
111	Y	$10_{\text {two }}$	Memory (10111 $\left.1_{\text {two }}\right)$

C is empty
C does not change
26)Cache block $111_{\text {two }}$ with tag $00_{\text {two }}$ corresponds to memory address \qquad two.
C
11100
C 00111
27) Design a direct-mapped cache with the following parameters:

- Address size: 32 bits
- Cache data size: 2 KB
- Cache block: 1 word

28) The following is a series of address references given as word addresses: $9,4,20,4,8,15,5$, $19,4,20,4,22,7,17,10$. Assume direct map with a word size of 1 and a total size of 8 words. Show the hits and misses and final cache contents. Show the final cache content.

Location	Hit/Miss?
9	
4	
20	
4	
8	
15	
5	
19	
4	
20	
4	
22	
7	
17	
10	

