

## 1) Which of the following is correct for a load instruction?

<sup>O</sup> MemtoReg should be set to cause the data from memory to be sent to the register file.

<sup>C</sup> MemtoReg should be set to cause the correct register destination to be sent to the register file.

<sup>©</sup> We do not care about the setting of MemtoReg for loads.

2) The single-cycle datapath conceptually described in this section *must* have separate instruction and data memories, because \_\_\_\_\_.

<sup>C</sup> the formats of data and instructions are different in MIPS, and hence different memories are needed

- having separate memories is less expensive
- the processor operates in one cycle
- 3) If the instruction is SW, then ALUOp should be \_\_\_\_\_.
- ° <sub>00</sub>
- ° <sub>01</sub>
- ° 10

• unknown

4) If the instruction is SW, then the ALU's four control inputs should be \_\_\_\_\_.

- ° <sub>0000</sub>
- ° <sub>0010</sub>
- ° 0110
- 5) For LW and SW instructions, the ALU function \_\_\_\_\_.
- is the same
- differs
- 6) If the instruction is OR, then ALUOp should be \_\_\_\_\_.
- ° 0001
- ° 10
- unknown
- 7) If the instruction is OR, then as well as examining the ALUOp bits, the ALU control will also examine \_\_\_\_\_.
- Instruction[31:26] (the leftmost bits)
- Instruction[5:0] (the rightmost bits)
- 8) If the instruction is OR, then the ALU control will (after examining the ALUOp and funct bits) output \_\_\_\_\_.
- ° 10
- ° <sub>0000</sub>
- <sub>0001</sub>

Consider the datapath and control unit below,



- 9) The control unit sends \_\_\_\_\_ bits to the ALU control.
- ° 0
- $\circ_{-1}$
- ° 2

10) The control unit enables a write to the register file using the \_\_\_\_\_\_ signal.

- RegDst
- MemWrite
- RegWrite

11) When MemToReg is 0, the data appearing at the register file's data input comes from the

- ALU's output
- data memory's output
- register file's output
- 12) The ALU's top input always comes from the Read data 1 output of the register file. The ALU's bottom input can come from two possible places: The Read data 2 output of the register file, or the instruction's lower 16 bits, sign extended to 32 bits. Which control unit output select among those two places?
- ALUOp
- ALUSrc
- Zero

- 13) The control unit's Branch output will be 1 for a branch equal instruction. However, the branch's target address is only loaded into the PC if the ALU's Zero output is \_\_\_\_\_. Otherwise, PC is loaded with PC + 4.
- о<sub>0</sub> о<sub>1</sub>
- 0

(actually, Zero is not involved)

Consider the figure below showing control unit outputs for four kinds of instructions, using four rows (Rows 1, 2, 3, and 4).

| Instruction | RegDst | ALUSrc | Memto-<br>Reg | Reg-<br>Write | Mem-<br>Read | Mem-<br>Write | Branch | ALUOp1 | ALUOp0 |
|-------------|--------|--------|---------------|---------------|--------------|---------------|--------|--------|--------|
| R-format    | 1      | 0      | 0             | 1             | 0            | 0             | 0      | 1      | 0      |
| lw          | 0      | 1      | 1             | 1             | 1            | 0             | 0      | 0      | 0      |
| SW          | X      | 1      | X             | 0             | 0            | 1             | 0      | 0      | 0      |
| beq         | X      | 0      | X             | 0             | 0            | 0             | 1      | 0      | 1      |

14) In Row 1, RegWrite is 1, meaning the register is always written for an R-type instruction.

- True
- False

15) In Row 1, the last two bits, ALUOp, are 10, meaning the ALU will perform an add function.

- True
- False
- 16) MemWrite is 1 for Row 3 (SW), but is 0 for Row 2. The reason is because while a store word instruction writes to the data memory, a \_\_\_\_\_\_ instruction does not.
- R-type
- load word
  - 17) In beq's Row 4, MemToReg is X because the value appearing at the register file's Write data input is irrelevant.
- True
- False

Consider the datapath in action for a load instruction. Indicate the values for the listed control signals.

18) RegDst

° 0  $\circ_{-1}$ 19) Branch ° 0 ° 1 20) MemRead ° 0 ° 1 21) MemToReg ° 0 ° 1 22) ALUSrc ° 0  $\circ_{-1}$ 23) RegWrite ° 0 ° 1 24) For a store word (SW) instruction, MemRead would be \_\_\_\_\_. ° 0 ° 1 25) For a store word (SW) instruction, RegWrite would be \_\_\_\_\_. ° 0  $\circ_{-1}$ 26) Highlight the active paths and assign values to the control signals of the following for \$8, \$9, 0x12 a. beq

- b. lw \$12, 0x34 (\$10)
- c. add \$9, \$8, \$10



27)

- a. Highlight and annotate the active data path with what they carry for: lw \$12, 0x34 (\$10)
  Assume prior to the execution, PC= 0X1020, \$12 = 0X9040, \$10= 0X9040. Mem[0x9040]= 0X 122C, Mem[0x9074] = 0X 3D82, Mem[0x84B4]= 0x AC12
- b. Fill the following table with the associated control signal values:

|             |       |        |        | Memto- | Reg   | Mem  | Mem   |        |            |
|-------------|-------|--------|--------|--------|-------|------|-------|--------|------------|
| Instruction | PCSrc | RegDst | ALUSrc | Reg    | Write | Read | Write | Branch | ALUControl |
| lw          |       |        |        |        |       |      |       |        |            |

c. Determine the contents after the execution PC= \$12 = \$10= Mem[0x9040]= Mem[0x9074] = Mem[0x84B4]=

