EGC442	Problem Set 12	Dr. Izadi
First Name:	Last Name:	

Consider a rising clock edge that causes 3000 to be written into the PC.

- 1) The 3000 waits at the instruction memory input for the next rising clock edge, at which time the instruction at address 3000 is read out.
- [©] True
- © False

2) After the address 3000 is read into the PC, the 3000 only propagates to the adder.

- © True
- [©] False

3) The 3000 waits at the adder input for the next rising clock edge.

- True
- © False

4) 3001 will be waiting at the PC's input to be written on the next rising clock edge.

- ^O True
- © False

5) The register file always outputs the two registers' values for the two input read addresses.

- [©] True
- © False
 - 6) The register file writes to one register on every rising clock edge.
- ^O True
- © False
 - 7) The design can read from two registers and write to one register during the same clock cycle.
- [©] True
- © False
 - 8) The programmer must take care not to create a program that writes to a register during the same cycle that the same register is read.
- _{True}
- © False

9) Consider the MIPS datapath. Find the error in each of the following statements: An R-type instruction like add uses three datapath units: the register file, the ALU, and the data memory.

- 10) Daw the data path for only *lw rt, d16 (rs)*. Make sure to only use the components that are necessary.
- 11) Draw the data path for the following assumed instruction. Make sure to only use the components that are necessary.

swr rt, rd (rs); $\operatorname{Reg}[rt] \rightarrow \operatorname{Mem}[\operatorname{Reg}[rd] + \operatorname{Reg}[rs]]$

- 12) Draw the data path for the following instruction set:
 - *lw rt, d16(rs),*
 - *sw rt, d16(rs),*
 - *R-type*,
 - *bne rs,rt, d16,*
 - swr rt, rd(rs)