EGC442	Problem Set 11	Dr. Izadi

First Name:	Last Name:

1. Determine the g_i , p_i , P_i , and G_i values of the following two 16 bit numbers. What is Cout₁₅ (C₁₆)?

0001 1010 0011 0011

 $+\ 1110\ 0101\ 1110\ 1011$

$$p_i = a_i + b_i$$

$$g_i = a_i b_i$$

Ci

Repeat Using P_i and G_i

 $P_0 =$

 $P_1 =$

 $P_2=$

 $P_3=$

 $G_0 =$

 $G_1 =$

 $G_2 =$

 $G_3 =$

 $C_4 =$

- 2. Assume you are asked to design a 64 bit carry lookahead carry adder as indicated below:
 - a. At the level one, use p_i and g_i and c_i , to express the Boolean function.
 - b. At the second level use P_i, G_i, C_i to express the Boolean function.
 - c. At the third level use P_i', G_i', and C_i' to express the Boolean function.
- 3. One simple way to model time for logic is to assume each AND and OR gate takes the same time for a signal to pass through it. Time is estimated by simply counting the number of gates along the longest path through a piece of logic. Compare the number of gate delays for the critical paths of the following 64-bit adders
 - a. Ripple carry
 - b. three-level carry lookahead
 - c. Carry lookahead at level one, and ripple carry between 4 bit modules
 - d. Carry lookahead at levels one and two, and ripple carry between 16 bit modules.