First Name: \qquad Last Name: \qquad

1. Determine the g_{i}, p_{i}, P_{i}, and G_{i} values of the following two 16 bit numbers. What is Cout 15 (C_{16})?

$$
\begin{aligned}
& 0001101000110011 \\
& \text { + } \underline{1110010111101011} \\
& \mathrm{p}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}}+\mathrm{b}_{\mathrm{i}} \\
& g_{i}=a_{i} b_{i} \\
& \mathrm{C}_{\mathrm{i}} \\
& \text { Repeat Using } \mathrm{P}_{\mathrm{i}} \text { and } \mathrm{G}_{\mathrm{i}} \\
& \mathrm{P}_{0}=\quad \mathrm{P}_{1}=\quad \mathrm{P}_{2}=\quad \mathrm{P}_{3}= \\
& \mathrm{G}_{0}= \\
& \mathrm{G}_{1}= \\
& \mathrm{G}_{2}= \\
& \mathrm{G}_{3}= \\
& \mathrm{C}_{4}=
\end{aligned}
$$

2. Assume you are asked to design a 64 bit carry lookahead carry adder as indicated below:
a. At the level one, use p_{i} and g_{i} and c_{i}, to express the Boolean function.
b. At the second level use P_{i}, G_{i}, C_{i} to express the Boolean function.
c. At the third level use $\mathrm{P}_{\mathrm{i}}{ }^{\prime}$, $\mathrm{G}_{\mathrm{i}}{ }^{\prime}$, and $\mathrm{C}_{\mathrm{i}}{ }^{\prime}$ to express the Boolean function.
3. One simple way to model time for logic is to assume each AND and OR gate takes the same time for a signal to pass through it. Time is estimated by simply counting the number of gates along the longest path through a piece of logic. Compare the number of gate delays for the critical paths of the following 64-bit adders
a. Ripple carry
b. three-level carry lookahead
c. Carry lookahead at level one, and ripple carry between 4 bit modules
d. Carry lookahead at levels one and two, and ripple carry between 16 bit modules.
