First Name: \qquad Last Name: \qquad

1) Add the following numbers using the floating-point addition algorithm. Assume 4 bits of precision.
a. $1.010 \times 2^{-3}+0.011 \times 2^{-3}=$?

- 1.101
© 1.101×2^{-6}
© 1.101×2^{-3}
b. $1.001 \times 2^{-4}+1.000 \times 2^{-6}=$?

C 10.001×2^{-4}
© 1.011×2^{-4}
c. $1.000 \times 2^{3}+0.011 \times 2^{5}=$?

C 1.010×2^{4}

- 0.101×2^{5}
- 10.001×2^{5}

2. Multiply $-14_{\text {ten }}$ and $-0.25_{\text {ten }}$, or $-1.110 \times 2^{3} \times-1.000 \times 2^{-2}$. Assume 4 bits of precision.
```
1.110000
    1.110000}\mp@subsup{0}{\mathrm{ two }}{\times}\times\mp@subsup{2}{}{1
    1.1100 two }\times\mp@subsup{2}{}{1
- 3+(-2)=1
    2
    3.5 ten
```

Adding the non-biased exponents of the operands
Multiply the significands:
$1.110 \times 1.000=$?
Product $=1.110000 \times$?
Normalize the product
Round the product
Set the sign of the product: ? $1.1100_{\text {two }} \times 2^{1}$
$-14_{\text {ten }} \times-0.25_{\text {ten }}=$?
3. Design the least significant a 32 bit ALU with the following functionality.

AND
OR
XOR
ADD
SUB
SLT

4. Design the most significant a 32 bit ALU with the following functionality.

AND
OR
XOR
ADD
SUB
SLT

5. Using Verilog design a 32 bit ALU with the following specification. Your code should include indicated flags.

