First Name: _____ Last Name: ____

1) Add the following numbers using the floating-point addition algorithm. Assume 4 bits of precision.

```
a. 1.010 \times 2^{-3} + 0.011 \times 2^{-3} = ?
```

- 0 1.101
- © 1.101 x 2⁻⁶
- © 1.101 x 2⁻³

b.
$$1.001 \times 2^{-4} + 1.000 \times 2^{-6} = ?$$

- $^{\circ}$ 10.001 × 2⁻⁴
- $^{\circ}$ 1.011 × 2⁻⁴

c.
$$1.000 \times 2^3 + 0.011 \times 2^5 = ?$$

- 0.010×2^4
- 0.101×2^5
- $^{\circ}$ 10.001 × 2⁵

2. Multiply -14_{ten} and -0.25_{ten}, or -1.110 \times 2³ \times -1.000 \times 2⁻². Assume 4 bits of precision.

- 1.110000
- 1.110000_{two} $\times 2^1$
- $1.1100_{\text{two}} \times 2^{1}$
- -
- 3 + (-2) = 1
- 2¹
- 3.5_{ten}

Adding the non-biased exponents of the operands

Multiply the significands:

$$1.110 \times 1.000 = ?$$

Product = $1.110000 \times ?$

Normalize the product

Round the product

Set the sign of the product: ? $1.1100_{\text{two}} \times 2^1$

$$-14_{ten} \times -0.25_{ten} = ?$$

3. Design the least significant a 32 bit ALU with the following functionality.

AND	
OR	
XOR	
ADD	
SUB	
SLT	

4. Design the most significant a 32 bit ALU with the following functionality.

AND	
OR	
XOR	
ADD	
SUB	
SLT	

5. Using Verilog design a 32 bit ALU with the following specification. Your code should include indicated flags.

