EGC442	HW# 6	Dr. Izadi

First Name: _____ Last Name: _____

20 T.

Question 1

Caches are important to providing a high-performance memory hierarchy to processors. Below is a list of 32-bit memory address references, given as word addresses.

3, 180, 43, 2, 191, 88, 190, 14, 181, 44, 186, 253

- a. For each of these references, identify the binary address, the tag, and the index given a direct-mapped cache with 16 one-word blocks. Also list if each reference is a hit or a miss, assuming the cache is initially empty.
- **b.** For each of these references, identify the binary address, the tag, and the index given a direct-mapped cache with two-word blocks and a total size of 8 blocks. Also list if each reference is a hit or a miss, assuming the cache is initially empty.
- c. You are asked to optimize a cache design for the given references. There are three direct-mapped cache designs possible, all with a total of 8 words of data: C1 has 1-word blocks, C2 has 2-word blocks, and C3 has 4-word blocks. In terms of miss rate, which cache design is the best? If the miss stall time is 25 cycles, and C1 has an access time of 2 cycles, C2 takes 3 cycles, and C3 takes 5 cycles, which is the best cache design?

20 PT.

Question 2

5.3 For a direct-mapped cache design with a 32-bit address, the following bits of the address are used to access the cache.

Tag	Index	Offset
31-10	9–5	4–0

a. What is the cache block size (in words)?

b. How many entries does the cache have?

c. What is the ratio between total bits required for such a cache implementation over the data storage bits?

Starting from power on, the following byte-addressed cache references are recorded.

Address											
0	4	16	132	232	160	1024	30	140	3100	180	2180

- **d.** How many blocks are replaced?
- e. What is the hit ratio?

f. List the final state of the cache, with each valid entry represented as a record of <index, tag, data>.

20 PT.

Question 3

Assume an instruction cache miss rate for an application is 2% and the data cache miss rate of 4%. Assume further that our CPU has a CPI of 2 without any memory stalls and the miss penalty is 40 cycles for all misses.

- a. Determine the overall CPI with the indicated misses, provided the frequency of all loads and stores in the application is 20%.
- b. Suppose we increase the performance of the machine in the above example by reducing its CPI from 2 to 1 via pipelining. Determine the new overall CPI.

40 PT.

Question 4

The following is a series of address references given as word addresses: 9, 4, 20, 4, 8, 15, 5, 19, 4, 20, 4, 22, 7, 17, 10.

a. Assume direct map with a word size of 1 byte, a block size of 1 word, and a total size of 8 words. Show the hits and misses and final cache contents. Show the final cache content.

Location	Hit/Miss?
9	
4	
20	
4	
8	
15	
5	
19	
4	
20	
4	
22	
7	
17	
10	

- b. Assume direct map with word size of 1 byte, a block size of 2, and a total size of 8 words. Show the hits and misses and final cache contents.
- c. Assume two way associative for the same total cache locations as of part b. Show the hits and misses and the final cache contents.

d. Assume a fully associated cache for the same total cache locations as of part b. Show the hits and misses and the final cache contents.

Due: Thursday 5/2/2023

EGC442 HW# 6

Dr. Izadi

Key

20 PT.

Question 1, Do problem 5.2.1 (a), 5.2.2 (b), 5.2.3 (c)

5.2.1

Word Address	Binary Address	Tag	Index	Hit/Miss
3	0000 0011	0	3	М
180	1011 0100	11	4	М
43	0010 1011	2	11	М
2	0000 0010	0	2	М
191	1011 1111	11	15	М
88	0101 1000	5	8	М
190	1011 1110	11	14	М
14	0000 1110	0	14	М
181	1011 0101	11	5	М
44	0010 1100	2	12	М
186	1011 1010	11	10	М
253	1111 1101	15	13	М

5.2.2

Word Address	Binary Address	Tag	Index	Hit/Miss
3	0000 0011	0	1	М
180	1011 0100	11	2	М
43	0010 1011	2	5	М
2	0000 0010	0	1	Н
191	1011 1111	11	7	М
88	0101 1000	5	4	М
190	1011 1110	11	7	Н
14	0000 1110	0	7	М
181	1011 0101	11	2	н
44	0010 1100	2	6	М
186	1011 1010	11	5	М
253	1111 1101	15	6	М

J.Z.J

			Cache 1		Ca	che 2	Ca	che 3
Word Address	Binary Address	Tag	index	hit/miss	index	hit/miss	index	hit/miss
3	0000 0011	0	3	М	1	М	0	М
180	1011 0100	22	4	М	2	М	1	М
43	0010 1011	5	3	М	1	М	0	М
2	0000 0010	0	2	М	1	М	0	М
191	1011 1111	23	7	М	3	М	1	М
88	0101 1000	11	0	М	0	М	0	М
190	1011 1110	23	6	М	3	Н	1	Н
14	0000 1110	1	6	М	3	М	1	М
181	1011 0101	22	5	М	2	Н	1	М
44	0010 1100	5	4	М	2	М	1	М
186	1011 1010	23	2	М	1	М	0	М
253	1111 1101	31	5	М	2	М	1	М

Cache 1 miss rate = 100%

Cache 1 total cycles = $12 \times 25 + 12 \times 2 = 324$

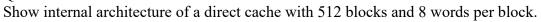
Cache 2 miss rate = 10/12 = 83%

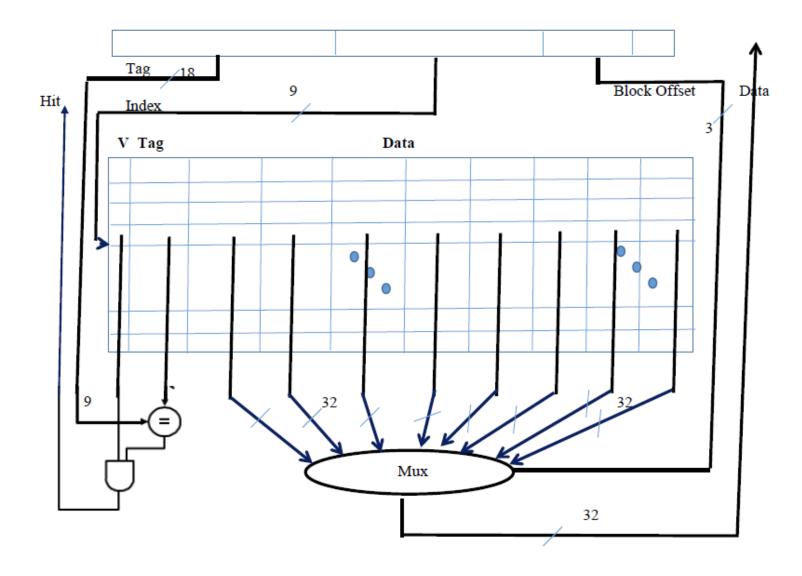
Cache 2 total cycles = $10 \times 25 + 12 \times 3 = 286$

Cache 3 miss rate = 11/12 = 92%

Cache 3 total cycles = $11 \times 25 + 12 \times 5 = 335$

Cache 2 provides the best performance.


20 PT. Question 2


- **a**. 8
- **b**. 32
- **c**. 1_(22/8/32)_1.086
- **d**. 3
- **e**. 0.25

f. _Index, tag, data_ <0000012, 00012, mem[1024]> <0000012, 00112, mem[16]> <0010112, 00002, mem[176]> <0010002, 00102, mem[2176]> <0011102, 00002, mem[224]> <0010102, 00002, mem[160]>

20 PT.

Question 3

40 PT.

Question 4

The following is a series of address references given as word addresses: 9, 4, 20, 4, 8, 15, 5, 19, 4, 20, 4, 22, 7, 17, 10.

a. Assume direct map with a word size of 1 and a total size of 8 words. Show the hits and misses and final cache contents. Show the final cache content.

Location	Hit/Miss?
9	miss
4	miss
20	miss
4	miss
8	miss
15	miss
5	miss
19	miss
4	hit
20	miss
4	miss
22	miss
7	miss
17	miss
10	miss

Index	Data for Memory Location
000	8
001	9 -17
010	10
011	19
100	4 20 4 20 4
101	5
110	22
111	15 -7

Location	Hit/Miss?
9	miss
4	miss
20	miss
4	miss
8	Hit
15	miss
5	Hit
19	Miss
4	Hit
20	miss
4	miss
22	miss
7	miss
17	miss
10	miss

b. Assume direct map with a word size of 2 and a total size of 8 words. Show the hits and misses and final cache contents.

Index	Data for Memory Location	Data for Memory Location
00	8 -16	9 -17
01	18- 10	19- 11
10	4 20 4 20 4	5 21 5 21 5
11	14-22- 6	15-23- 7

c. Assume two way associative for the same total cache locations as of part b. Show the hits and misses and the final cache contents.

Location	Hit/Miss?
9	miss
4	miss
20	miss
4	hit
8	miss
15	miss
5	miss
19	Miss
4	hit
20	miss
4	hit
22	miss
7	miss
17	miss
10	miss

Index	Data for Memory Location	Data for Memory Location
00	4	20, 8, 20
01	9, 17	5
10	22	10
11	15, 7	19

I used LRU replacement algorithm. In case both had the same usage, I used FIFO.

d. Assume a fully associated cache for the same total cache locations as of part b. Show the hits and misses and the final cache contents.

Location	Hit/Miss?
9	miss
4	miss
20	miss
4	hit
8	miss
15	miss
5	miss
19	miss
4	hit
20	hit
4	hit
22	miss
7	miss
17	miss
10	miss

I used LRU replacement algorithm. In case both had the same usage, I used FIFO.

Location	Data for Memory
	Location
0	9, 7
1	4
2	20
3	8, 17
4	15, 10
5	5
6	19
7	22

20 PT.

Question 5

Assume an instruction cache miss rate for an application is 2% and the data cache miss rate of 4%. Assume further that our CPU has a CPI of 2 without any memory stalls and the miss penalty is 40 cycles for all misses.

- a. Determine the overall CPI with the indicated misses, provided the frequency of all loads and stores in the application is 20%.
- b. Suppose we increase the performance of the machine in the above example by reducing its CPI from 2 to 1 via pipelining. Determine the new overall CPI.

α.

I-cache miss rate = 2% D-cache miss rate = 4% Miss penalty = 40 cycles Base CPI (ideal cache) = 2 Load & stores are 20% of instructions Miss cycles per instruction I-cache: 0.02 × 40 = .8 D-cache: 0.2 × 0.04 × 40 = .32

- Actual CPI = 2 + .8 + .32 = 3.12
- e. Actual CPI = 1 + .8 + .32 = 2.12