
EGC442 HW#5 Dr. Izadi

First Name: Last Name:

Question 1 (25 Points)

For the code below,

lw $t0, 0($s1)
add $t1, $s1, $a2
sub $t0, $t0, $s2
sw $t1, 0($s1)
addi $s1, $s1,–4

a. On the diagram, mark and identify all the data dependencies in the code given below
and identify which dependencies will cause data hazards without forwarding
hardware.

b. Assuming there is no special hardware that is added for forwarding, add “nop”
instructions to the code to avoid the data hazards.

c. Assume that the hardware supports forwarding and stalling. Show from which pipe
the data is taken from and where it is forwarded. How many cycles will it take to
execute this code (no need for nops)? Indicate what each stage will do during the 6th
clock cycle.

d. How many cycles will it take to execute this code in parts b. and c.?

Question 2 (25 Points)

For the code below,

lw $1, 0($1)
lw $1, 0($1)
add $1, $1, $2
lw $1, 0($1)
sw $2, 12($1)

a. On the diagram, mark and identify all the data dependencies in the code given below

and identify which dependencies will cause data hazards without forwarding
hardware.

b. Assuming there is no special hardware that is added for forwarding, add “nop”
instructions to the code to avoid the data hazards.

c. Assume that the hardware supports forwarding and stalling. Show from which pipe
the data is taken from and where it is forwarded. How many cycles will it take to
execute this code (no need for nops)? Indicate what each stage will do during the 6th
clock cycle.

d. How many cycles will it take to execute this code in parts b. and c.?

Question 3 (25 Points)
In this exercise, we examine how data dependences affect execution in the basic 5-
stage pipeline described in COD Section 4.5 (An overview of pipelining). Problems in
this exercise refer to the following sequence of instructions:

or r1, r2, r3

or r2, r1, r4

or r1, r1, r2

Also, assume the following cycle times for each of the options related to forwarding:

a. Indicate dependences and their type.

b. Assume there is no forwarding in this pipelined processor. Indicate hazards
and add nop instructions to eliminate them.

c. Assume there is full forwarding. Indicate hazards and add NOP instructions
to eliminate them.

d. What is the total execution time of this instruction sequence without
forwarding and with full forwarding? What is the speedup achieved by adding full
forwarding to a pipeline that had no forwarding?

e. Add nop instructions to this code to eliminate hazards if there is ALU-ALU
forwarding only (no forwarding from the MEM to the EX stage).

f. What is the total execution time of this instruction sequence with only ALU-
ALU forwarding? What is the speedup over a no-forwarding pipeline?

Note: With full forwarding, an ALU instruction can forward a value to EX stage of the
next instruction without a hazard, With ALU-ALU-only forwarding, an ALU instruction
can forward to the next instruction

Question 4 (25 Points)

4.13 This exercise is intended to help you understand the relationship between
forwarding, hazard detection, and ISA design. Problems in this exercise refer to the
following sequence of instructions, and assume that it is executed on a 5-stage pipelined
datapath:

add r5, r2, r1

lw r3, 4(r5)

lw r2, 0(r2)

or r3, r5, r3

sw r3, 0(r5)

a. If there is no forwarding or hazard detection, insert nops to ensure
correct execution.

b. Repeat 4.13.1 but now use nops only when a hazard cannot be avoided by
changing or rearranging these instructions. You can assume register R7 can be used
to hold temporary values in your modified code.

c. If the processor has forwarding, but we forgot to implement the hazard
detection unit, what happens when this code executes?

d. If there is forwarding, for the first five cycles during the execution of this
code, specify which signals are asserted in each cycle by hazard detection and
forwarding units in COD Figure 4.60 (Pipelined control overview, showing the two
multiplexor for forwarding …).

e. If there is no forwarding, what new inputs and output signals do we need for
the hazard detection unit in COD Figure 4.60 (Pipelined control overview, showing
the two multiplexor for forwarding …)? Using this instruction sequence as an
example, explain why each signal is needed.

f. For the new hazard detection unit from 4.13.5, specify which output signals
it asserts in each of the first five cycles during the execution of this code.

Due: 4/14/2023

EGC442 HW#5 Dr. Izadi

Key

Question 1 (25 Points)
a On the diagram, mark and identify all the data dependencies in the code given
below and identify which dependencies will cause data hazards without forwarding
hardware.

lw $t0, 0($s1)
add $t1, $t2, $a2
sub $t0, $t0, $s2
sw $t1, 0($s1)
addi $s1, $s1,–4

IF ID EX MEM WB

lw $t0, 0($s1)
add $t1, $t2, $a2
sub $t0, $t0, $s2
sw $t1, 0($s1)
addi $s1, $s1,–4

All dependencies are marked. Every dependency will cause data hazard.

a. Assuming there is no special hardware that is added for forwarding, add “nop” instructions to the

code to avoid the data hazards.

Every dependency can be resolved by delaying two clock cycles, assuming we have the
hardware to write on the first half of the clock and read on the second half of it. By
placing the nop after the add, both hazards are taken care of.

lw $t0, 0($s1)
add $t1, $t2, $a2
nop
sub $t0, $t0, $s2
sw $t1, 0($s1)
addi $s1, $s1,–4

b. Assume that the hardware supports forwarding and stalling. Show from which pipe the data is
taken from and where it is forwarded. How many cycles will it take to execute this code (no need
for nops)? Indicate what each stage will do during the 6th clock cycle.

IF ID EX MEM WB

lw $t0, 0($s1)
add $t1, $t2, $a2
sub $t0, $t0, $s2
sw $t1, 0($s1)
addi $s1, $s1,–4

It takes 9 cycles to execute this code.

During the 6th cycle, contents of register $t1 is written with the sum of $t2 and
$a2, Mem is not doing anything useful. ALU is adding $s1 to 0, register $s1 is read.
Side note: instruction following addi is fetched.

c. How many cycles will it take to execute this code in parts b. and c?

For part b, we would end up with 10 cycles. As indicated above, we use 9 cycles in
part c.

6th clk

lw $1, 0($1)
lw $1, 0($1)
add $1, $1, $2
lw $1, 0($1)
sw $2, 12($1)

Question 2 (25 Points)
For the code below,

lw $1, 0($1)
lw $1, 0($1)
add $1, $1, $2
lw $1, 0($1)
sw $2, 12($1)

IF ID EX MEM WB

All dependencies are marked. Every dependency will cause data hazard.

b. Assuming there is no special hardware that is added for forwarding, add “nop” instructions to

the code to avoid the data hazards.

Every dependency can be resolved by delaying two clock cycles, assuming we have the
hardware to write on the first half of the clock and read on the second half of it.

lw $1, 0($1)
nop (2 or 3 nop’s would be OK)
nop
lw $1, 0($1)
nop (2 or 3 nop’s would be OK)
nop
add $1, $1, $2
nop (2 or 3 nop’s would be OK)
nop
lw $1, 0($1)
nop (2 or 3 nop’s would be OK)
nop
sw $2, 12($1)

c. Assume that the hardware supports forwarding and stalling. Show from which pipe the data
is taken from and where it is forwarded. How many cycles will it take to execute this code
(no need for nops)? Indicate what each stage will do during the 6th clock cycle.

IF ID EX MEM WB

lw $1, 0($1)

stall

lw $1, 0($1)

stall

add $1, $1, $2

lw $1, 0($1)

stall

sw $2, 12($1)

It takes 12 cycles to execute this code.

During the 6th cycle, contents of Mem[$1 +0] is re-written back to $1, Data
memory Mem[$1 +0] read , $1 and constant 0 is added again, registers $1 and $2
are read, and lw instruction is fetched.

d. How many cycles will it take to execute this code in parts b. and c?

For part b, we would end up with 17 cycles (21 cycles if we use 3 nop’s). As indicated
above, we use 12 cycles in part c.

6th clk

I1: or r1, r2, r3

I2: or r2, r1, r4

I3: or r1, r1, r2

Question 3 (25 Points)

Note: With full forwarding, an ALU instruction can forward a value to EX stage of the next
instruction without a hazard, With ALU-ALU-only forwarding, an ALU instruction can forward to
the next instruction

a.

I2 is dependent on r1 of I1, I3 is dependent on r1 of I1 and r2 of I2. All are data hazard.

b.

or r1, r2, r3
nop
nop
or r2, r1, r4
nop
nop
or r1, r1, r2

c. (With full forwarding, an ALU instruction can forward a value to EX stage of the next
instruction without a hazard)

With full forwarding, an ALU instruction can forward a value to EX stage of the next instruction
without a hazard. However, a load cannot forward to the EX stage of the next instruction (by can to
the instruction after that). The code that eliminates these hazards by inserting NOP instructions is:

I1: or r1, r2, r3

I2: or r2, r1, r4

I3: or r1, r1, r2

I1: or r1, r2, r3

I2: or r2, r1, r4

I3: or r1, r1, r2

I1: or r1, r2, r3

nop

I2: or r2, r1, r4

I3: or r1, r1, r2

d.
The total execution time is the clock cycle time times the number of cycles. Without
any stalls, a three-instruction sequence executes in 7 cycles (5 to complete the first
instruction, then one per instruction). The execution without forwarding must add a
stall for every NOP we had in b. So, we get (7+4) * 250 ps = 2750 ps.
The execution with forwarding only uses 7 cycles. However, each cycle take 300 ps.
Therefore we get 7 * 300 = 2100.
Hence, the speedup due to forwarding is 2750/2100 = 1.31

e. (With ALU-ALU-only forwarding, an ALU instruction can forward to the next instruction),

With ALU-ALU-only forwarding, an ALU instruction can forward to the next
instruction, but not to the second-next instruction (because that would be forwarding
from MEM to EX).

Therefore, r1 from the first instruction can’t be forwarded to the 3rd one.

I1: or r1, r2, r3

I2: or r2, r1, r4

I3: or r1, r1, r2

The problem is that adding any nop would require the forwarding to be from MEM to EX i.e

Therefore, we would be forced into regular nop’s

or r1, r2, r3
nop
nop
or r2, r1, r4
nop
nop
or r1, r1, r2

f.
The execution without forwarding adds a stall for every NOP. So, we get (7+4) * 250
ps = 2750 ps.
The execution with ALU - ALU forwarding uses 11 cycles at 290 ps. So, we get (7+4) *
290 ps = 3190 ps.

So speedup = 2750/3190 = .86

Question 4 (25 Points)

a. ADD R5,R2,R1
NOP
NOP
LW R3,4(R5)
LW R2,0(R2)
NOP
OR R3,R5,R3
NOP
NOP
SW R3,0(R5)

b.

We can move up an instruction by swapping its place with another instruction that
has no dependences with it, so we can try to fill some NOP slots with such
instructions. We can also use R7 to eliminate WAW or WAR dependences so we can
have more instructions to move up.

I1: ADD R5,R2,R1
I3: LW R2,0(R2) Moved up to fill NOP slot
NOP
I2: LW R3,4(R5)
NOP Had to add another NOP here,
NOP so there is no performance gain
I4: OR R3,R5,R3
NOP
NOP
I5: SW R3,0(R5)

c.With forwarding, the hazard detection unit is still needed because it must insert
a one-cycle stall whenever the load supplies a value to the instruction that
immediately follows that load. Without the hazard detection unit, the instruction
that depends on the immediately preceding load gets the stale value the register
had before the load instruction.

Code executes correctly (for both loads, there is no RAW dependence between the
load and the next instruction).

d. The outputs of the hazard detection unit are PCWrite, IF/IDWrite, and ID/EXZero

(which controls the Mux aft er the output of the Control unit). Note that IF/IDWrite is
always equal to PCWrite, and ED/ExZero is always the opposite of PCWrite. As a result,
we will only show the value of PCWrite for each cycle. Th e outputs of the forwarding
unit is ALUin1 and ALUin2, which control Muxes that select the fi rst and second input
of the ALU. Th e three possible values for ALUin1 or ALUin2 are 0 (no forwarding), 1
(forward ALU output from previous instruction), or 2 (forward data value for second-
previous instruction). We have:

i.The instruction that is currently in the ID stage needs to be stalled if it
depends on a value produced by the instruction in the EX or the instruction in
the MEM

stage. So we need to check the destination register of these two instructions. For the
instruction in the EX stage, we need to check Rd for R-type instructions and Rd for
loads. For the instruction in the MEM stage, the destination register is already
selected (by the Mux in the EX stage) so we need to check that register number (this
is the bottommost output of the EX/MEM pipeline register). The additional inputs to
the hazard detection unit are register Rd from the ID/EX pipeline register and the
output number of the output register from the EX/MEM pipeline register. The Rt field
from the ID/EX register is already an input of the hazard detection unit in Figure
4.60. No additional outputs are needed. We can stall the pipeline using the three
output signals that we already have.

ii.As explained for part e, we only need to specify the value of the

PCWrite signal, because IF/IDWrite is equal to PCWrite and the
ID/EXzero signal is its opposite. We have:

	EGC442 HW#5 Dr. Izadi
	EGC442 HW#5 Dr. Izadi

