First Name: \qquad Last Name: \qquad

Problem 1 (25 Points)
Show the internal architecture of a 4-bit ALU with the following function table:

ALU Control Lines	Functions
	AND
	OR
	XOR
	NAND
	NOR
	ADD
	Subtract
	SLT

Your design should have the following flags:
Carry, Sign, Zero, Overflow
Problem 2 (15 Points)
Write a MIPS subroutine to carryout the following function.

$$
\begin{aligned}
& \text { temp }=\mathrm{v}[\mathrm{k}] ; \\
& \mathrm{v}[\mathrm{k}]=\mathrm{v}[\mathrm{k}+1] ;
\end{aligned}
$$

$$
\mathrm{v}[\mathrm{k}+1]=\text { temp }
$$

Assume base address of v is register $\$ \mathrm{a} 1, \mathrm{k}$ is in register $\$ \mathrm{a} 2$, and temp is assigned to $\$ \mathrm{~s} 1$.

Problem 3 (15 Points)
Show the IEEE 754 binary representation of the number $+0.375_{\text {ten }}$ in single precision
Problem 2 (15 Points)
Show the IEEE 754 binary representation of the number $-0.9375_{\text {ten }}$ in double precision:
Problem 3 (20 Points)
Convert the single precision binary floating-point representation to decimal.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	0	0	0	0	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 bit																															

Figure 1: Floating point representation

Problem 1 (25 Points)
Show the internal architecture of a 4-bit ALU with the following function table:
Your design should have the following flags:
Carry, Sign, Zero, Overflow

$\mathrm{X}_{4} \mathrm{X}_{3} \mathrm{X}_{2} \mathrm{X}_{1} \mathrm{X}_{0}$					Functions AND
0	0	0	0	0	
	0	0	0	1	OR
0	0	0	1	0	XOR
	1	0	0	1	NAND
	1	0	0	0	NOR
	0	0	1		ADD
	1	0	1		Subtract
0	1	1	1		SLT

MSB

Problem 2 (15 Points) Write a MIPS subroutine to carryout the following function. temp $=\mathrm{v}[\mathrm{k}] ; \mathrm{v}[\mathrm{k}]=\mathrm{v}[\mathrm{k}+1] ; \mathrm{v}[\mathrm{k}+1]=$ temp; Assume base address of v is register $\$ \mathrm{a} 1, \mathrm{k}$ is in register $\$ \mathrm{a} 2$, and temp is assigned to $\$ \mathrm{~s} 1$.

SWAP; addi sp, sp, -4
sw $\quad \$ \mathrm{~s} 1,0(\mathrm{sp})$
sll \$a2, \$a2, 2
add \$a1, \$a1, \$a2
lw $\quad \$ \mathrm{~s} 1,0(\$ \mathrm{a} 1)$
lw $\$ 11,4(\$ \mathrm{a} 1)$
sw \$s1, 4(\$a1)
sw $\quad \$ 11,0(\$ \mathrm{a} 1)$
lw $\quad \$ \mathrm{~s} 1,0(\mathrm{sp})$
addi sp, sp, 4
jr \$ra

Problem 3 (15 Points) Show the IEEE 754 binary representation of the number +0.375 ten in single precision
$.375_{10}=.011_{2}=1.1 \times 2^{-2}$

Exponent $=127-2=125$
101111101110000000000000000000000

Problem 2 (15 Points) Show the IEEE 754 binary representation of the number -0.9375 ten in double precision
$-.9375_{10}=.1111=1.111 \times 2^{-1}$
Exponent $=1023+1=1024$
1100000000011100000000000000000000000000000

Problem 3 (20 Points) Convert the single precision binary floating-point representation to decimal.

