EGC-442	HW #3	Dr. Izadi
---------	-------	-----------

First Name: _____ Last Name: _____

Problem 1 (25 Points)

Show the internal architecture of a 4-bit ALU with the following function table:

ALU Control Lines	Functions
	AND
	OR
	XOR
	NAND
	NOR
	ADD
	Subtract
	SLT

Your design should have the following flags: Carry, Sign, Zero, Overflow

Problem 2 (15 Points)

Write a MIPS subroutine to carryout the following function.

temp = v[k]; v[k] = v[k + 1]; v[k + 1] = temp;

Assume base address of v is register \$a1, k is in register \$a2, and temp is assigned to \$s1.

Problem 3 (15 Points)

Show the IEEE 754 binary representation of the number +0.375ten in single precision

Problem 2 (15 Points)

Show the IEEE 754 binary representation of the number -0.9375ten in double precision:

Problem 3 (20 Points)

Convert the single precision binary floating-point representation to decimal.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	0	0	0	0	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 bit 8 bit																				23 bi	t										

Figure 1: Floating point representation

EGC442

Problem 1 (25 Points)

Show the internal architecture of a 4-bit ALU with the following function table: Your design should have the following flags: Carry, Sign, Zero, Overflow

$X_4 X_3 X_2 X_1 X_0$	Functions
$0 \ 0 \ 0 \ 0 \ 0$	AND
0 0 0 0 1	OR
$0 \ 0 \ 0 \ 1 \ 0$	XOR
1 1 0 0 1	NAND
$1 \ 1 \ 0 \ 0 \ 0$	NOR
0 0 0 1 1	ADD
0 1 0 1 1	Subtract
0 1 1 1 1	SLT

MSB

Problem 2 (15 Points) Write a MIPS subroutine to carryout the following function. temp = v[k]; v[k] = v[k+1]; v[k+1] = temp; Assume base address of v is register \$a1, k is in register \$a2, and temp is assigned to \$s1.

SWAP;	addi	sp, sp, -4
	SW	\$s1, 0(sp)
	sll	\$a2, \$a2, 2
	add	\$a1, \$a1, \$a2
	lw	\$s1, 0(\$a1)
	lw	\$t1, 4(\$a1)
	SW	\$s1, 4(\$a1)
	SW	\$t1, 0(\$a1)
	lw	\$s1, 0(sp)
	addi	sp, sp, 4
	jr	\$ra

Problem 3 (15 Points) Show the IEEE 754 binary representation of the number +0.375ten in single precision

 $.375_{10} = .011_2 = 1.1 \times 2^{-2}$

Exponent = 127 - 2 = 125

Problem 2 (15 Points) Show the IEEE 754 binary representation of the number -0.9375ten in double precision - .9375₁₀ = .1111 = 1.111×2^{-1} Exponent = 1023 + 1 = 1024

Problem 3 (20 Points) Convert the single precision binary floating-point representation to decimal.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	1	0	0	0	0	0	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 bit			8	bit											23 bi	t															

+ 131 - 127 = 4 $1.101 \times 2^4 = 11010$ = 26