First Name: \qquad Last Name: \qquad
Problem 1 (10 Pt)
For the following C statement, what is the corresponding MIPS assembly code? Assume that the C variables f, g, and h , have already been placed in registers $\$ \mathrm{~s} 0, \$ \mathrm{~s} 1, \$ \mathrm{~s} 2$, respectively. Use a minimal number of MIPS assembly instructions.
$\mathrm{f}=\mathrm{g}+(\mathrm{h}-5) ;$
addi $\$ s 0, \$ s 2,-5$
add \$s0, \$s0, \$s1
[addi f,h,-5 (note, no subi) add f,f,g]

Problem 2 (10 Pt)
Write a single C statement that corresponds to the two MIPS assembly instructions below.
add f, g, h
add f, i, f
$f=g+h+i$

Problem 3 (10 Pt)
For the following C statement, write the corresponding MIPS assembly code. Assume that the variables $\mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}$, and j are assigned to registers $\$ \mathrm{~s} 0, \$ \mathrm{~s} 1, \$ \mathrm{~s} 2, \$ \mathrm{~s} 3$, and $\$ \mathrm{~s} 4$, respectively. Assume that the base address of the arrays A and B are in registers \$s6 and \$s7, respectively.

$$
\begin{aligned}
& \mathrm{B}[8]=\mathrm{A}[\mathrm{i}-\mathrm{j}] ; \\
& \text { sub } \$ t 0, \$ \mathrm{~s} 3, \$ \mathrm{~s} 4 \\
& \text { sll \$t0, \$t0, } 2 \\
& \text { add \$t0, \$s6, \$t0 } \\
& \text { lw \$t1, } 0(\$ t 0) \\
& \text { sw \$t1, } 32(\$ \mathrm{~s} 7)
\end{aligned}
$$

Problem 4 (10 Pt)

Translate the following C code to MIPS. Assume that the variables, f,g. h, i, and j are assigned to registers $\$ \mathrm{~s} 0, \$ \mathrm{~s} 1, \$ \mathrm{~s} 2, \$ \mathrm{~s} 3$, and $\$ \mathrm{~s} 4$, respectively. Assume that the base address of A and B are in registers \$s6 and \$s7, respectively. Assume that the elements of the arrays A and B are 4 -byte words:
$\mathrm{B}[8]=\mathrm{A}[\mathrm{i}]+\mathrm{A}[\mathrm{j}] ;$

```
sll $t0, $s3, 2 # $t0 <-- 4*i
add $t0, $t0, $s6 # $t0 <-- Addr(A[i])
lw $t0, 0($t0) # $t0 <-- A[i]
sll $t1, $s4, 2 # $t1 <-- 4*j
add $t1, $t1, $s6 # $t1 <-- Addr(A[j])
lw $t1, 0($t1) # $t1 <-- A[j]
add $t0,$t0,$t1 # t1 <-- A[i] + A[j]
saw $t0,32($s7) # B[8] <-- A[i] + A[j]
```


Problem 5 (10 Pt)

For each MIPS instruction in Exercise 2.8, show the value of the opcode (op), source register (rs) and funct field, and destination register (rd) fields. For the I-type instructions, show the value of the immediate field, and for the R-type instructions, show the value of the second source register (rt).

	type	opcode	rs	rt	rd	immed
addi $\$ t 0, \$ s 6,4$	I-type	8	22	8	--	4
add $\$ t 1, \$ s 6, \$ 0$	I-type	0	22	0	9	--
sw $\$ t 1,0(\$ t 0)$	I-type	43	8	9	--	0
Iw $\$ t 0,0(\$+0))$	I-type	35	8	8	--	0
add $\$ s 0, \$+1, \$+0$	R-type	0	9	8	16	--

Problem 6 (10 Pt)
Assume that registers $\$ \mathrm{~s} 0$ and $\$$ s 1 hold the values 0×80000000 and $0 x \mathrm{D} 0000000$, respectively.
(a) What is the value of $\$ \mathrm{t} 0$ for the following assembly code?
add $\$ \mathrm{t} 0, \$ \mathrm{~s} 0, \$ \mathrm{~s} 1$

0×50000000

(b) Is the result in $\$ \mathrm{t} 0$ the desired result, or has there been overflow?

Overflow
(c) For the contents of registers $\$ \mathrm{~s} 0$ and $\$ \mathrm{~s} 1$ as specified above, what is the value of $\$ \mathrm{t} 0$ for the following assembly code?
sub $\$ \mathrm{t} 0, \$ \mathrm{~s} 0, \$ \mathrm{~s} 1$
$0 \times B 0000000$
(d) Is the result in $\$$ t0 the desired result, or has there been overflow?
no overflow
(e) For the contents of registers $\$$ s0 and $\$$ s1 as specified above, what is the value of $\$ \mathrm{t} 0$ for the following assembly code?
add $\$ \mathrm{t} 0, \$ \mathrm{~s} 0, \$ \mathrm{~s} 1$
add $\$ \mathrm{t} 0, \$ \mathrm{t} 0, \$ \mathrm{~s} 0$
$0 \times D 0000000$
(f) Is the result in $\$ \mathrm{t} 0$ the desired result, or has there been overflow?
overflow

Due: 2/24/2023

