First Name: $\qquad$ Last Name: $\qquad$
Problem 1 (10 Pt)
For the following C statement, what is the corresponding MIPS assembly code? Assume that the C variables $\mathrm{f}, \mathrm{g}$, and h , have already been placed in registers $\$ \mathrm{~s} 0, \$ \mathrm{~s} 1, \$ \mathrm{~s} 2$, respectively. Use a minimal number of MIPS assembly instructions.
$\mathrm{f}=\mathrm{g}+(\mathrm{h}-5) ;$

Problem 2 (10 Pt)
Write a single C statement that corresponds to the two MIPS assembly instructions below.
add f, g, h
add $\mathrm{f}, \mathrm{i}, \mathrm{f}$

Problem 3 (10 Pt)
For the following C statement, write the corresponding MIPS assembly code. Assume that the variables $f, g, h, i$, and $j$ are assigned to registers $\$ s 0, \$ s 1, \$ s 2, \$ s 3$, and $\$ s 4$, respectively. Assume that the base address of the arrays A and B are in registers \$s6 and \$s7, respectively.
$B[8]=A[i-j] ;$

## Problem 4 (10 Pt)

Translate the following C code to MIPS. Assume that the variables, f,g. h, i, and j are assigned to registers $\$ \mathrm{~s} 0, \$ \mathrm{~s} 1, \$ \mathrm{~s} 2, \$ \mathrm{~s} 3$, and $\$ \mathrm{~s} 4$, respectively. Assume that the base address of A and B are in registers \$s6 and \$s7, respectively. Assume that the elements of the arrays A and B are 4 -byte words:
$\mathrm{B}[8]=\mathrm{A}[\mathrm{i}]+\mathrm{A}[\mathrm{j}] ;$

Problem 5 (10 Pt)
For each MIPS instruction in Exercise 2.8, show the value of the opcode (op), source register (rs) and funct field, and destination register (rd) fields. For the I-type instructions, show the value of the immediate field, and for the R-type instructions, show the value of the second source register (rt).

|  | type | opcode | rs | rt | rd | immed |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| addi \$t0, \$s6, 4 |  |  |  |  |  |  |
| add \$t1, \$s6, \$0 |  |  |  |  |  |  |
| sw \$t1, 0(\$t0) |  |  |  |  |  |  |
| lw \$t0, 0(\$t0)) |  |  |  |  |  |  |
| add \$s0, \$t1, \$t0 |  |  |  |  |  |  |

Problem 6 (10 Pt)
Assume that registers $\$$ s0 and $\$$ s1 hold the values $0 \times 80000000$ and $0 x D 0000000$, respectively.
(a) What is the value of $\$ t 0$ for the following assembly code?
add $\$ \mathrm{t} 0, \$ \mathrm{~s} 0, \$ \mathrm{~s} 1$
(b) Is the result in $\$ \mathrm{t} 0$ the desired result, or has there been overflow?
(c) For the contents of registers $\$ \mathrm{~s} 0$ and $\$ \mathrm{~s} 1$ as specified above, what is the value of $\$ 0$ for the following assembly code?
sub $\$ \mathrm{t} 0, \$ \mathrm{~s} 0, \$ \mathrm{~s} 1$
(d) Is the result in $\$ \mathrm{t} 0$ the desired result, or has there been overflow?
(e) For the contents of registers $\$ \mathrm{~s} 0$ and $\$ \mathrm{~s} 1$ as specified above, what is the value of $\$ \mathrm{t} 0$ for the following assembly code?
add \$t0, \$s0, \$s1
add \$t0, \$t0, \$s0
(f) Is the result in $\$ t 0$ the desired result, or has there been overflow?

