The Processor

" New Paltz

STATE UNIVERSITY OF NEW YORK

Baback 1zadi
ECE Department
bai@engr.newpaltz.edu

Sequential Laundry

6 PM 7 8 9 10 11 12 1 2 AM

|||||||||||||
301301 30'30'30'30'30'30'30'30'30'30'30'30 3o|

%a"slﬁ PO

o 85 .

gas g5 A &
1S =2

e Sequential laundry takes 8 hours for 4 loads

A\ SUNY — New Paltz
/ Elect. & Comp. Eng. j/

o

Pipelined Laundry

~ un v -

—<('DQ_—<O

8 9

Time

= Pipelined laundry: overlapping execution
= Parallelism improves performance

SUNY — New Paltz
Elect. & Comp. Eng.

e
Pipelining Analogy

Time — -]

Task

order —
B0

0=
B0sl
B0=(

o o @ >

Four loads:

S
o o w >» =

= Speedup
=8/3.5=2.3

Non-stop:
= Speedup
=2n/0.5n+1.5=4

= number of stages

SUNY — New Paltz
Elect. & Comp. Eng.

™~

Pipelining doesn’t help latency of
single task, it helps throughput of
entire workload

Multiple tasks operating
simultaneously using different
resources

Potential speedup = Number pipe
stages

Pipeline rate limited by slowest
pipeline stage

Unbalanced lengths of pipe stages
reduces speedup

Time to “fill” pipeline and time to
“drain” 1t reduces speedup

Stall for dependencies

Y

~Single Stage VS. Pipeline Performance

Instr. Register | ALU Data Reg.
Instruction | Memory Read Op. Memory Write Total
R-format 2 1 2 0 1 6 ns
Iw 2 1 2 2 1 8 ns
SwW 2 1 2 2 7ns
beq 2 1 2 5ns
Program
execution _ 2 4 6 8 10 12 14 16 18
order Time 1 1 T T T l l l >
(in instructions)
Instruction Data
Iw $1, 100($0) fetch | R€9| ALY access |¢9
w $2,200(80) 8 ns | eten | Reg|[ALU | Oreas |Red
-« —>|Instruction
lw $3, 300($0) 8 ns fetch
— ... >

Program 5 4 6 8 10 12 14
g;((;}g:ltlon Time T T T T T T T >
(in instructions) :

w $1, 100(80) |MStruction Reg| ALU | 028 |Reg

-+ i
w $2, 200($0) 2ns |Mepucton Reg| ALU [D21 [Reg
-+ H
w $3, 300($0) 2ns | Mefructon Reg| ALU [D22 [Reg

- P —— P ———— P ——— P ————>
2 ns 2 ns 2 ns 2 ns 2ns

SUNY — New Paltz
Elect. & Comp. Eng. j/

e
MIPS Pipeline

o Five stages, one step per stage

[F: Instruction fetch from memory

ID: Instruction decode & register read

EX: Execute operation or calculate address

MEM: Access memory operand

ol B LW N

WB: Write result back to register

Eﬁ_ SUNY - New Paltz
#9’ Elect. & Comp. Eng.

/
Pipelining
e What makes it easy in MIPS
e All instructions are the same length
e Just a few instruction formats
e Memory operands appear only in loads and stores

e What makes It hard?

e Structural hazards: suppose we had only one memory
e Control hazards: need to worry about branch instructions
e Data hazards: an instruction depends on a previous Instruction

o We’ll build a simple pipeline and look at these issues
e what makes it really hard for modern processors

e Exception handling
e Trying to improve performance with out-of-order execution

SUNY — New Paltz
Elect. & Comp. Eng.

e
Pipeline Speedup

Program

; 2 4 6 8 10 12 14
execution Time : 1 ' : ; T T >
order
(in instructions) -

w $1, 100(30) |'"Srucen Reg| ALU | o028 |Reg
P i
lw $2, 200($0) 2ns |MSfruction Reg| ALu | D2 lReg
P i
lw $3, 300($0) 2 ns msftélffﬁ'on Reg| ALU aﬁé"éis Reg
2 ns 2 ns 2 ns 2 ns 2ns

e [fall stages are balanced

¢ i.c., all take the same time

Time between 1nstruct10nsmmpip(__“m_,(,

® Time between instructions

pipvlim*tl =

Number of stages
* It not, speedup is less

o Speedup is due to increased throughput

* Latency (time for each instruction) does not decrease

SUNY — New Paltz
Elect. & Comp. Eng.

b

The Five Stages of Load

e What do we need to add to actually split the datapath
Into stages?

LW Ifetch IReg/DecI EXxec I Mem I Wr

e Ifetch: Instruction Fetch
e Fetch the instruction from the Instruction Memory

» Reg/Dec: Registers Fetch and Instruction Decode
e Exec: Calculate the memory address

e Mem: Read the data from the Data Memory

Wr: Write the data back to the register file

SUNY — New Paltz
Elect. & Comp. Eng.

IF: Instruction fetch

0
M
u
X

1

Basic ldea

ID: Instruction decode/
register file read

EX: Execute/

address calculation

MEM: Memory access

Add

PC Address

Instruction

Instryction
me mory

A
A\ SUNY - New Pa

;IE'} Elect. & Comp. Eng.

1z

Read
register 1 Read
Read data 1
register2
_ Registers Reagd
»| Write data 2
register
Write
data
16 [\32
A\ Sign |\

dd result
S hift
left 2
Zero
ALU ALy
res ult

WB: Write back

R xcz©

e

Read
Address data
Data
mermory
White
data

\W\

O xczr

IF: Instruction fetch

0
M
u
X

1

Basic ldea

ID: Instruction decode/
register file read

EX: Execute/

address calculation

MEM: Memory access

Add

PC Address

Instruction

Instryction
me mory

A
A\ SUNY - New Pa

;IE'} Elect. & Comp. Eng.

1z

Read
register 1 Read
Read data 1
register2
_ Registers Reagd
»| Write data 2
register
Write
data
16 [\32
A\ Sign |\

dd result
S hift
left 2
Zero
ALU ALy
res ult

WB: Write back

R xcz©

e

Read
Address data
Data
mermory
White
data

\W\

O xczr

Pipelining and ISA Design

e MIPS ISA designed for pipelining

e All instructions are 32-bits
Easier to fetch and decode in one cycle
c.f. x86: 1- to 17-byte instructions
® Few and regular instruction formats
Can decode and read registers in one step
® Load/store addressing
Can calculate address in 3™ stage, access memory in 4th stage
* Alignment of memory operands

Memory access takes only one cycle

SUNY - New Paltz

Ei’ Elect. & Comp. Eng.

Pipeline registers

® Need registers between stages

® To hold information produced in previous cycle

Add

L
PC Address
L

Instruction
memory

Instruction

)|

Read
register 1

Read

" | register 2

Write

register

Write
data

Registers Read

Read

data 1

data 2|

MEM/WB

AY SUNY — New Paltz
,,/ Elect. & Comp. Eng.

_ [Sign- 3
extend

Data

memory

Can you find a problem?
What instructions can we execute to manifest the problem?

e

Pipeline Operation

® Cycle-by-cycle flow of instructions through the pipelined
datapath
® “Single-clock-cycle” pipeline diagram
Shows pipeline usage in a single cycle
Highlight resources used

o c.f. “multi—clock—cycle” diagram

Graph of operation over time

e We'll look at “single—clock—cycle” diagrams for load & store

A\ SUNY - New Paltz
' Elect. & Comp. Eng.

|F for Load, Store, ...

Iw

Instruction fetch

>Add

Address

Instruction
memory

IF/ID

ID/EX

Instruction

Y

Y SUNY — New Paltz
#9’ Elect. & Comp. Eng.

Shift
left 2

. | Read
"~ | register 1 Read
data 1
Read
register 2
Registers Rgaq
Write data 2
register
) Write
data
16 i
2 Sign-
extend

d Add
result

EX/MEM
—
> @ Address
Data
memory
_ _ | Write
v 7| data

Read
data

MEM/WB

Y

D for Load, Store, ...

Iw

Instruction decode

MEM/WB

Data
memory

Read
data

IFID ID/EX EX/MEM
Add >
) 9 el
Shift
left 2
=
PC Address _% Read
2 register 1 Read >
B data 1
= Read ——
Instruction register %e .
memory) 9ISIers Read - > @ Address
Write data 2 -
register
Write
data
Write
o " | data
16
N O
—

SUNY — New Paltz
Elect. & Comp. Eng.

EX for Load

b
AY SUNY — New Paltz
f Elect. & Comp. Eng.

Read
data

MEM/WB

| lw |
| Execution |
IF/ID ID/EX EX/MEM
Shift result
left 2
0
M
u PC Address 5 Read
" 2[7| register 1 Read
1 5 data 1
2 Read > "
Instruction - < registe}l:"g isters g
memory B Write 9 Read > . .
" | register data 2 Data
o memory
data
Write
> *| data
1 !
? [sign- 32 |
V| extend

“x c 2°

M for Load

Y

Add

Address

Instruction
memory

A
A\ SUNY - New Paltz
Elect. & Comp. Eng.

Y

EX/MEM

IF/ID ID/EX
Shift
left 2
c
% Read Read
=4 " | register 1 ea
’g‘ g data 1
=, Read
register 2
Registers goaq
Write data 2
register
Write
data
16 i
X . | Sign- 32
v | extend

Iw |
Memory I
MEM/WB
e
Read
@ Address data [
Data
memory
o | Write
7| data

or

Oa

> Add

4 —p]

IF/ID

ID/EX

Address

Instruction
memory

Instruction

SUNY — New Paltz
Elect. & Comp. Eng.

Shift
left 2

Read
register 1 Read
data 1
Read
ister 2
Registers .
Write data 2
regisjér
rite
data
16 1
+ . | Sign-
| extend

32

Add
result

o]

rite back

MEM/WB

EX/MEM

> -

> Read

> @ Address data
Data
memory

o | Write

o 7| data

Corrected Datapath for Load

A J

Add

Address

Instruction
memory

SUNY — New Paltz
Elect. & Comp. Eng.

IFID

Sign-
extend

\

MEM/WB

ID/EX EX/MEM
Add eﬁdﬁ >
Shift resu
left 2
c
-% 5 | Read Read
2 = | register 1 ea >
‘é’ 9 data 1
= Read > =t
register2
I Registers ggo.q _ > @ Address
5 | Write data 2 o
" | register
Write
data
Write
data

Data
memory

Read
data

EX for Store

sw

Execution

xc=°

PC

A

MEM/WB

IF/ID ID/EX EX/MEM
Add - - > \
4 AdgAdd >
Shift result
left 2
Address c . | Read Read
2 register 1 ea >
1] data 1
Fe—»| Read Zero —
Instruction _ < register 2 ALU ALy _ Read
memory - —e wiite Reglsiers.Fhea d > result - Address data
- register data 2 Data
; memor
—| Write ol y
data
-~ Write
- data
1‘\3 sign- | 32 -
v extend

SUNY — New Paltz
Elect. & Comp. Eng.

M for Store

| ™ |
I Memory I
IF/ID ID/EX EX/MEM MEM/WB
Add > > \l
— o 25—
Shift resu
left 2
0
M c
u PC Address % . | Read
x =4 "~ | register 1 Read >
1 ’g‘ data 1
= Read - -
Instruction o register2 Read
memory g _ Registers gggag > > @ Address data [
Write data 2 -
register Data
) Write memory
data
o | Write
g " | data
16 . -
X . | Sign- 32 | | >
v | extend

A
AY SUNY — New Paltz
¥ Elect. & Comp. Eng. }

or

ore

IF/ID ID/EX
>Add >
4 —
Shift
left 2
c
Address % Read
2 register 1 Read
3 data 1
= Read
Instruction o reglster% ister
memory o . egisters pead
Write data 2
register
Write

SUNY — New Paltz
Elect. & Comp. Eng.

data

EX/MEM
Add
result
> ——
> @]

Address

Write
data

Data
memory

Read
data

sw
W

rite-back

MEM/WB

e

Graphically Representing Pipelines

Time (in clock cycles)

Program
execution

order —
(in instructions)
Iw $10, 20($1) 17 Reg ALU DM REg

CC1 CC2 CC3 CC4 CC5

| L

CCob

Reg

sub $11, $2, $3 IM REg ﬁ— lT—l:l‘
v
-

Can help with ansv;ering question_s like:

e How many cycles does it take to execute this code?

e What is the ALU doing during cycle 4?

e Use this representation to help understand datapaths

A\ SUNY — New Paltz

¥ Elect. & Comp. Eng.

™~

Why Pipeline?

Time (clock cycles)

V

\ SUNY — New Paltz
P Elect. & Comp. Eng.

e

)

Multi-Cycle Pipeline Diagram

e Form showing resource usage

Time (in clock cycles) >

CC1 cC2 CC3 CC4 CC5 CCé6 CC7 CCs8 CC9

Program
execution
order

(in instructions)

Iw $10, 20($1)

sub $11, $2, $3

add $12, $3, $4

lw $13, 24($1)

add $14, $5, $6

Y

SUNY — New Paltz
Elect. & Comp. Eng.

e

Single-Cycle Pipeline Diag
* State of pipeline in a given cycle
add $14, $5, $6 | Iw $13, 24 ($1) | add $12, $3, $4 I sub $11, $2, $3 | Iw $10, 20($1) |
Instruction fetch | Instruction decode | Execution | Memory | Write-back |
IF/ID ID/EX EX/MEM MEM/WB
Add >
4 Add
Shift result
left 2
(0

M

u PC » Address Read

X 5 register 1 Read > >

L1 = data 1
2 - Hei_idt) Zero e
Instruction z register2 ALU Ay o Read
memory mi | wiite Registers g:t:dz result Address d:?a B
| register Data
. x\gti;e memory
Write
data
16 Sign- 32 -
r extend —
= = = e

A\ SUNY - New Paltz
' Elect. & Comp. Eng.

P . I . d C t | S - | . f .
PCSrc
IF/ID ID/EX EX/MEM MEM/WB
Add > > > \
4 AddAdld -
Shift result Branch
left 2 I_:
L0 RegWrite
M |
u PC »|Address 5 . | Read
x b= ™ register 1 Read > > MemWrite
>\ 1 g data 1 |
2 - fe%?ger) ALUSrC Zero MemtoReg
Instruction —
> —e Registers > Read
memory wite o2 Read > Address data [|
register data 2 Data
—»-| Write memory
data
_ Write
. " | data
Instruction
(15-0) 16 [gign. | 32 & [aw | .
¥ extend “ | control MemRead
Instruction
(20-16)
0 | ALUOp
M > >
Instruction :
(15-11) 1
> -
RegDst

SUNY — New Paltz
Elect. & Comp. Eng.

e

Pipeline Control

* WWe have 5 stages.

* What needs to be controlled in each stage?
e Instruction Fetch and PC Increment
e Instruction Decode / Register Fetch
e Execution
e Memory Stage
e Write Back

e How would control be handled in an automobile plant?
e A fancy control center telling everyone what to do?
e Should we use a finite state machine?

SUNY — New Paltz
Elect. & Comp. Eng.

Pipeline Control A

e Control signals derived from instruction

® Asin single—cycle implementation

e Pass control signals along just like the data
Write-back
Execution/Address Calculation Memory access stage stage control
stage control lines control lines lines
Reg ALU ALU ALU Mem | Mem Reg |Memto
Instruction Dst Opl Op0 Src [Branch| Read [Write | write Reg
R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
SW X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X
W B L
Instruction
—»| Control .

EX

\AA
<
A
=
o8}

Yvy
<
=
o8}

v

\ 4

&k} SUNY — New Paltz IF/ID ID/E X EX/MEM MEM/W B
' Elect. & Comp. Eng. /30

PCSrc

/Pipelined Control

IFID

ID/EX

Control

WB

L

X/MEM

WB

Add

L (0

PC » Address

xc =

Instruction
memory

Instruction

RegWrite

o | Aead

register 1
Read

SUNY — New Paltz
Elect. & Comp. Eng.

reqister 2
Regist

Read

| MEM/WB

WB

ALUSre

data 1

* Read

Write

register

Write
data

data 2

Instruction
[15-0]

Instruction
[20-16]

Instruction
[15-11]

ALU aLu
result

Branch

MemWrite

v

Write

ALU

control

Y

data

Address

Read
data

Data
memory

MemRead

MemtoReg

xc=z ©

RegDst

Designing a Pipelined Processor

e (Go back and examine your datapath and control diagram
e Associated resources with states

e Ensure that flows do not conflict, or figure out how to resolve

e Assert control In appropriate stage

A\ SUNY - New Paltz
}'.:f" Elect. & Comp. Eng.

e
Pipelining Troubles?

e Pipeline Hazards
* Situations that prevent starting the next instruction in the next cycle

e Structural hazards: attempt to use the same resource two different
ways at the same time.

e Data hazards: attempt to use item before it is ready.
Instruction depends on result of prior instruction still in the pipeline.

e Control hazards: attempt to make a decision before condition is
evaluated.

Branch instructions
e Can always resolve hazards by

e Pipeline control must detect the hazard.
e Take action (or delay action) to resolve hazards.

A\ SUNY — New Paltz
" Elect. & Comp. Eng.

Structure Hazards

e Conflict for use of a resource

* In MIPS pipeline with a single memory
® Load/store requires data access

® Instruction fetch would have to stall for that cycle

Would cause a pipeline “bubble”

* Hence, pipelined datapaths require separate instruction/data
memories

® Or separate instruction/ data caches

A\ SUNY — New Paltz
;/ Elect. & Comp. Eng.

™~
Data Hazards

e Problem with starting next instruction before first is finished
e Dependencies that “go backward in time” are data hazards

Time (in clock cycles)
CCc1 CC2 CC3 CC4 CC5 CC6 CcCC 7 CccC 8 CCo9

$2

Program
execution
order

(in instructions)
sub $2, $1, $3 Y] ;]

and $12, $2, $5

or $13, $6, $2 Reg

add $14, $2, $2

-I: DM —J— Reg

sw $15, 100($2)

A\ SUNY - New Paltz
P Elect. & Comp. Eng. /3%

b

Data Hazard Solution

® An instruction depends on completion of data access by a
previous Instruction

e add $s0, $tO, $t1
sub $t2, $sO0, $t3

, 200 400 600 800 1000 1200 1400 1600
Time T I I I I I >

[
add $s0, $t0, $t1 IF —': D %MEM WB
bubble bubble bubble
nop “!.'4!."‘!'

bubble
@
nop bubble bubble bubble bubble
@ @) @

Q)
sub $t2, $s0, $t3 IF —': %MEM WB

SUNY - New Paltz

Elect. & Comp. Eng.

Software Solution

e Have compiler guarantee no hazards
* Where should compiler insert “nop” Instructions?

sub $2, $1, $3
and $12, $2, $5
or $13, %6, $2

add $14, $2, $2
sw $15, 100($2)
e Problem:

e |t happens too often to rely on compiler
e |t really slows us down!

\\ SUNY — New Paltz
P Elect. & Comp. Eng.

. Code Scheduling to Avoid Stalls

® CcodeforA = B + E; C =B + F;

B
@y
My

SUNY - New Paltz
Elect. & Comp. Eng.

4

5 Code Scheduling to Avoid Stalls

® Reorder code to avoid use of load result in the next instruction

® CcodeforA = B + E; C =B + F;

-

-

SUNY - New Pal
Elect. & Comp. Eng.

4

e

b

Forwarding (aka Bypassing)

® Use result when it is computed
® Don’t wait for it to be stored in a register

® Requires extra connections in the datapath

Program

execution 200 400 600 800 1000

order Time
(in instructions)

add $s0, $t0, $t1 IF

MEM

sub $t2, $s0, $t3

SUNY — New Paltz
Elect. & Comp. Eng.

e

4

Data Hazards in ALU Instructions

® Consider this sequence:

sub $2, $1,%3
and $12,%2,%$5
or $13,%6,%52
add $14,%2,%2
sw $15,100($2)

® We can resolve hazards with forwarding

® How do we detect when to forward?

SUNY — New Paltz
Elect. & Comp. Eng.

" Data Hazard Solution: Forwarding

e Use temporary results (ALU forwarding), don’t wait for them to be
written

e Also, write register file during 1st half of clock and read durlng 2nd
half Time (in clock cycles)

CC1 CcC 2 cC 3 CcCC 4 CC5 CC &6 cCc7 cC 8 CcC 9

Value of register $2 : 10 10 10 10 10/-20 - 20 - 20 - 20 - 20
Va I of EXIMEM : X X X - 20 X X X X X
Value of MEM/WB : X X X X -20 X X X X

Program
execution order

(in instructions)
sub $2, $1, $3 IM Reg| | DM [— Reg
| 4
and $12, $2, $5 IV —-:l-li Reg[| DM I [—Reg
or $13, $6, $2 IM —JJ:Reg j— —[DM L1 [1REg
[] —]
add $14, $2, $2 IM (— Reg| | :LD— —[DM — HReg
sw $15, 100($2) IM (— FHReg[] :D— ‘Iil‘I_H‘Reg
v \

SUNY — New Paltz whatif this $2 was $13?
Elect. & Comp. Eng. /42

4

Time (in clock cycles)

" Data Hazard Solution: Forwarding

CC1 CC 2 cc 3 CC 4 CC5 CC &6
Value of register $2 : 10 10 10 10 10/-20 -20
Value of EXIMEM : X X X - 20 X X
Value of MEM/WB : X X X X - 20 X
Program
execution order
(in instructions)
sub $2, $1, $3 IM Reg| | DM [— Reg
| 4
and $12, $2, $5 M — Reg[| DM Reg

or $13, $6, $2

add $14, $2, $2

sw $15,100(%$2)

SUNY — New Paltz whatif this $2 was $13?
Elect. & Comp. Eng.

cCc7
-20

cC 8
-20

CC 9
- 20

Dependencies & Forwarding

Time (in clock cycles) >
Value of CC1 CC2 CC3 CC4 CC5 CCe CC7 cCs8 CC9
register $2: 10 10 10 10 10/-20 —20 -20 —20 -20

Program
execution
order

(in instructions) =

-
sub $2, $1, $3 M LFl_eg W1DM—y—Reg
and $12, $2, $5 M —dﬁeQ DM
or $13, $6, $2 N | FoRé S
| | | | L~
add $14, $2,$2 IM —n'Lﬁe e—gJ:
|
v Sw$15,100($2) IM DM Regjl

SUNY — New Paltz
Elect. & Comp. Eng.

Forwarding Paths

MEM/WB

ID/EX EX/MEM
N “{w]
= U >
’ o
' N
—| |
i ForwardA
Registers ALU—
— > >

Rs

Rt

Rt

rcfg

ForwardB

Rd

Yy

ol

u

Data

memory

A

-_
-

EX/MEM.RegisterRd

X

>

~ Forwarding \ —

MEM/WB.RegisterRd

-\ unit |

b. With forwarding

Eﬁ_ SUNY — New Paltz
:ﬁ}’ Elect. & Comp. Eng.

|
¥

Detecting the Need to Forward

® Pass register numbers along pipeline
* e.g., ID/EX.RegisterRs = register number for Rs sitting in
ID/EX pipeline register
® ALU operand register numbers in EX stage are given by
* ID/EX.RegisterRs, ID/EX.RegisterRt

® Data hazards when
la. EX/MEM.RegisterRd = ID/EX.RegisterRs
Ib. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

7b. MEM/ WB.Registeer = ID/EX.RegisterRt -
\
4

-

AN

SUNY — New Paltz
Elect. & Comp. Eng.

o

Detecting the Need to Forward

® But only if forwarding instruction will write to a register!
* EX/MEM.RegWrite, MEM/WB.RegWrite

e And only if Rd for that instruction is not $zero

* EX/MEM.RegisterRd # 0,
MEM/WB.RegisterRd # 0

SUNY — New Paltz
Elect. & Comp. Eng.

-
Datapath with Forwarding

00 Register file

01 Mem. or earlier ALU

N

10 PriorALU
ID/EX
’_'WB EX/MEM
Control >~ M - WB MEM/WB
IF/ID L EX - M »WBH—
> U >
> X
c — |
S >
é Registers ALUL . . o
. 2 g u
Instruction | = - > X
memory . .~ |u . Data
X memory
[o
IF/ID.RegisterRs Rs .
IF/ID.RegisterRt | [Rt
IF/ID.RegisterRt _| [Rt :ﬂ EX/MEM.RegisterRd
IF/ID.RegisterRd Rd |y o
v
- Forwarding Y, | | MEM/WB.RegisterRd
J\ unit)< .
&

SUNY — New Paltz
Elect. & Comp. Eng.

Forwarding Conditions

e EX hazard

* if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
ForwardA = 10

* if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
ForwardB = 10

e MEM hazard

* it (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01
* if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01

Iﬁ\ SUNY - New Paltz
#9’ Elect. & Comp. Eng.

00
01
10

/ Register file

Mem. or earlier ALU
Prior ALU

Hazard Conditions

e Steer the result from previous instruction to the Alﬂ ol
rﬁ“ LBAW
@id |V NEANB
o U L |
H_Irﬂnﬂm.» ;E e »Xt_ Al— B |
nenay nenay u
| g _I@
PRl || [
e EX hazard | HLEEE—{ [R5 _ _|
if (EX/MEM.Reg\\rite =
and (EX/MEM.RegisterRd #0)

and (EX /MEM.RegisterRd = ID/EX.RegisterRs)) ForwardA = 10
If (EX/IMEM.Reg\Write

and (EX/MEM.RegisterRd #0)

and (EX /MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10

l SUNY - New Paltz
;f Elect. & Comp. Eng. /5(Z

"Hazard Conditions

 Steer the result from precious instruction to the A/L\U I@ |_
o U L Sl e
H.Irmﬂm.» _2 s »)t(_ Al— e [
nenay nenay
i
| i i
IF&EB:@E_ i3
¢ MEM hazard i B — By L | _\
if (MEM/WB. =
and (MEM/WB.RegisterRd +#0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA =01
if (MEM/WB.

and (MEM/WB.RegisterRd #0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

A\ SUNY — New Paltz
¥ Elect. & Comp. Eng.

Double Data Hazard

® Consider the sequence:

e Both hazards occur

® Want to use the most recent

e Revise MEM hazard condition
° Only fwd if EX hazard condition isn’t true

Eﬁ_ SUNY - New Paltz
#9’ Elect. & Comp. Eng.

4

Revised Forwarding Condition

e MEM hazard

* if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01

* if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01

SUNY - New Paltz

Elect. & Comp. Eng.

(Can't always forward

e lw can still cause a hazard:

e An instruction tries to read a register following a load
Instruction that writes to the same register.

Time (in clock cycles)

Reg

Program CC1 CcC2 CC3 CC14 CC5 CC6 CC7 CC8
xecutio
order
(in instructions)]
Iw $2, 20($1) | IM Reg| |
and $4, $2, $5 M H HReg
or $8, $2, $6 IM
add $9, $4, $2
slt $1, $6, $7 IM Reg[| :B— DM

» Thus, we need a hazard detection unit to “stall” t
load Instruction

b
AY SUNY — New Paltz
f Elect. & Comp. Eng.

€

e

Load-Use Data Hazard

e Can’t always avoid stalls by forwarding
® [f value not computed when needed

® Can’t forward backward in time!

Program
execution 200 400 600 800 1000 1200 1400

order Time . :
(in instructions) I
lw $s0, 20($t1) IF —=5 1D SEX—MEM

MEM|—{ WB |

sub $t2, $s0, $t3 IF

SUNY — New Paltz
Elect. & Comp. Eng.

Load-Use Hazard Detection

® Check when using instruction is decoded in ID stage

e ALU operand register numbers in ID stage are given by
® [F/ID.RegisterRs, IF/ID.RegisterRt

® [oad-use hazard when

* ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

e If detected, stall and insert bubble

A\ SUNY - New Paltz
' Elect. & Comp. Eng.

e

How to Stall the Pipeline

® Force control values in ID/EX register to 0

* EX, MEM and WB do NOP (no-operation)
® Prevent update of PC and IF/ID register

* Using instruction is decoded again

® Following instruction is fetched again

® 1-cycle stall allows MEM to read data for Iw
Can subsequently forward to EX stage

A\ SUNY - New Paltz
' Elect. & Comp. Eng.

Stall/Bubble in the Pipeline

Time (in clock cycles) >
CC1 cC2 CC3 CcC4 CC5 CC6 CcC7 cC8 CcC9 CC10

Program
execution
order

(in instructions) _ -

[y 1
Iw $2, 20($1) IM ReE[: :D —[DM Egi
and becomes nop IM — —dllieg @

and $4, $2, $5 IM HH F=Re:

bubble

or $8, $2, $6

| add $9, $4, $2

SUNY - New Paltz

b Elect. & Comp. Eng. y

e
Stall/Bubble in the Pipeline

Time (in clock cycles) >
CC1 cC2 CC3 CC4 CC5 CCe6 CC7 cCs8 CC9 CC10

Program
execution
order

(in instructions) n B B

oo (A B

and becomes nop IM — —'::F@ 7C> ﬂg
L 1 |

and $4, $2, $5 stalled in ID =y \
stalled i E s)_

|| | 7
or $8, $2, $6 stalled in IF x B L —E{F;g: —Ee_gl
- —
add $9, $4, $2 N
\ IM DM Reg

SUNY — New Paltz
Elect. & Comp. Eng.

o

/Datapath with Hazard Detection

= Stall by letting an instruction that won’t write anything go forward

= Controls writing of the PC and IF/ID plus MUX

[Hazard \ ID/EX.MemRead
i@actlon [
— unit)
_g Jy
% ID/EX
T wB EX/MEM
. »Control M > WB LhiEM/WB
= o R -
% |F"|D EX M wWB
a
~
> > M
u
S > X
3 Registers R -~ M
Y . = —~ ALUP- u
pclL,| Instruction | | |£ "M
memory - Data X
- u memory
N X
IF/ID.RegisterRs -
IF/ID.RegisterRt
IF/ID.RegisterRt . Rt, M
IF/ID.RegisterRd _ Rd_ g
ID/EX.RegisterRt J
Rs Forwarding
Rt unit I
SUNY — New Paltz
Elect. & Comp. Eng. /6(Z

5 Code Scheduling to Avoid Stalls

® Revisiting reordering code to avoid use of load result in the next

Instruction

e CcodeforA = B + E; C =B + F;

-
-

SUNY - New Paltz
Elect. & Comp. Eng.

4

PCSrc

/Branch Hazards

IFID

ID/EX

Control

WB

L

Y

X/MEM

WB

Add

L (0

PC | Addre

xc =

Instruction
memory

Instruction

RegWrite

o | Aead

register 1
Read

SUNY — New Paltz
Elect. & Comp. Eng.

reqister 2
Regist

Read

| MEM/WB

WB

ALUSre

data 1

* Read

ALU aLu

Write

register

Write
data

result

data 2

Instruction
[15-0]

Instruction
[20-16]

Instruction
[15-11]

i
"u::'-j\

Branch

MemWrite

v

Write

ALU

4

v

control

Y

data

Address data

Read

Data
memory

MemRead

MemtoReg

xc=z ©

[=]
xE=

RegDst

/Branch Hazards

» \When decide to branch, other instructions may be in the pipeline!

e If branch outcome determined in MEM

Time (in clock cycles)

CC1 Ccc2 CC3 CC4 CCs CCe cc7 CcCcs CCa

Program
execution
order

(in instructions)

40 beq $1, $3, 28

I

44 and $12, $2, $5

-

48 or $13, $6, $2

52 add $14, $2, $2

—

172 Iw $4, 50($7)

SUNY — New Paltz
Elect. & Comp. Eng.

4

e

Control Hazards

® Branch determines flow of control
® Fetching next instruction depends on branch outcome

© Pipeline can’t always fetch correct instruction

Still working on ID stage of branch
* In MIPS pipeline
® Need to compare registers and compute target early in the pipeline
® Add hardware to do it in ID stage

A\ SUNY — New Paltz
/ Elect. & Comp. Eng.

e

Our Original Datapath

PCSrc

EX/MEM

NV
I—‘><C§O
[}

PC

Y SUNY — New Paltz
#9’ Elect. & Comp. Eng.

.M

l_l\/lEM/\NB

WB

RegDst

IF/ID M
. \‘
Add
4 —»/ o >Add result -
% Shift Branch
g left 2 e
ALUSrc =
= »| Read %
Address g register 1 Read \ -
]
g’ Readt 2 daat Zero [
: £ register v
Inﬁfg;:gf; > ~ Registers Read ro >ALU ALU Read
Write data 2 result Address ea
register M data
U Data
| Write X memory
data b—>{ 1
Write
data
Instruction
1 32 6
[15-0] \ Sign N ALU MemRead
N lextend N | control
Instruction
[20-16] 5
M
Instruction u
[15-11] 1X

o xcz =\ MemtoReg

Reduce Branch Delay

IF.Flush
(Hazard
' dt ctio
'k t
M IDFEX
u ——
— WB|
EX/MEM
" |
u M
U L e | e
IF/ID EX M WHB|
' >+ || || ||
+ .y
4 Shift 3
left 2 , R
u
K

. Data
memory

Registers
Instruction >
PC memory _> 1

i
]

—C Z)r’(<)
N2

/Sign\
@

|

{Forwarding}‘_
unit

~
14

A\ SUNY - New Paltz

;I.lf}” Elect. & Comp. Eng.

e

Stall on Branch

® One solution: Wait until branch outcome determined before

fetching next instruction

* Another solution: flush the pipe if branch is taken — only one

delay penalty.

Program
execution
order

(in instructions)

add $4, $5, $6

Time

beq $1, $2, 40

or $7, $8, $9

b
AY SUNY — New Paltz
f Elect. & Comp. Eng.

200 400 600

800

1000

1200

1400

I I

Instruction
fetch

Reg| ALU

Data
access

Reg

-

Instruction Reg

200 ps

fetch

ALU

Data
access

Reg

bubble

bubbley(bubble

T

bubble¢y(bubble
O

. S

Instruction
fetch

400 ps

Reg

ALU

Data
access

Reg

e

Branch Prediction

* Longer pipelines can’t readily determine branch outcome early

e Stall penalty becomes unacceptable

® Predict outcome of branch

® Only stall if prediction is wrong
® In MIPS pipeline

® Can predict branches not taken

® Fetch instruction after branch, with no delay
Need to add hardware for flushing instructions if we are wrong

A\ SUNY — New Paltz
¥ Elect. & Comp. Eng.

b

MIPS with Predict Not Taken

SUNY — New Paltz
Elect. & Comp. Eng.

Program
execution Time 200 400 600 800 1000 1200 1400 R
Order T T T T T T T =
(in instructions)
add$4,55,86 |"ar| res| mw | 22, fneo
eq$1,52,40 oo aMin) [mes| | 2, e
~+——Instruction Data
lw $3, 300($0) 200 ps| fetch Reg| ALU access | 19
Y
Program
execution Time 200 400 600 800 1000 1200 1400 -
order I I T I I I I =
(in instructions)
Instructi Data
add $4’ $5’ $6 nsf;l::hlon Reg ALU access Reg
beq $1, $2, 40 m'”s’:;‘g:c’” Reg| ALU agj‘;zs Reg
bubbley(bubbl ubbl ubbley/(bubble
9
—or $7, $8, $9 - »(Instruction Data
\ 400 ps fetch Reg | ALU access | °9

e
Reducing Branch Delay

® Move hardware to determine outcome to ID stage

® Target address adder

® Register comparator

® Example: branch taken

36: sub $10, %4, $8
40: beq $1, $3, 7

44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7

72- Iw $4, 50($7)

A\ SUNY - New Paltz
,,/ Elect. & Comp. Eng.

Example: Branch Taken

and $12, $2, $5 beq $1, $3, 7 sub $10, $4, $8 before<1> before<2>

IF.Flush

/ Hazard 1\

detection]
44 I

I
I
I
1
1
I
I
I
I
I
I
I
1
1
1
I
I

unit /

IDJEX

g—_-_-_-_—_-_-_-_-_—_-_

m
-

3
0
72
$1

Regi *
$3 |

xCc=

Data
memory

@

—
i iForwardingi :: :
_ unit -

Clock 3

SUNY — New Paltz
Elect. & Comp. Eng.

)

Example: Branch Taken

Iw $4, 50($7)
IF.Flush

Bubble (nop) beq $1, $3, 7 sub $10, ... before<1>

1
1
:
1
Hazard !
1
1
1
1

:‘ detection -i
unit)
o
[o u
IFAID })— O—M
(72
18
i Registers é)

EX/MEM

left 2

Data
memory

i

n-
w

I

Forwarding
unit a
T

Clock 4

SUNY — New Paltz
Elect. & Comp. Eng.

)

e

SUNY - New Paltz

4

Pipeline Summary

° Pipelining improves performance by increasing instruction
throughput
® Executes multiple instructions in parallel

e Each instruction has the same latency

® Subject to hazards

® Structure, data, control

® Instruction set design affects complexity of pipeline

implementation

Elect. & Comp. Eng. /73

e

SUNY - New Paltz

4

Stalls and Performance

* Stalls reduce performance

® But are required to get correct results

° Compiler can arrange code to avoid hazards and stalls

® Requires knowledge of the pipeline structure

Elect. & Comp. Eng. /74

	Chapter 4�(Part II)
	Sequential Laundry
	Pipelined Laundry
	Pipelining Analogy
	Single Stage VS. Pipeline Performance
	MIPS Pipeline
	Pipelining
	Pipeline Speedup
	The Five Stages of Load
	Basic Idea
	Basic Idea
	Pipelining and ISA Design
	Pipeline registers
	Pipeline Operation
	IF for Load, Store, …
	ID for Load, Store, …
	EX for Load
	MEM for Load
	WB for Load
	Corrected Datapath for Load
	EX for Store
	MEM for Store
	WB for Store
	Graphically Representing Pipelines
	Why Pipeline?
	Multi-Cycle Pipeline Diagram
	Single-Cycle Pipeline Diagram
	Pipelined Control (Simplified)
	Pipeline Control
	Pipeline Control
	Pipelined Control
	Designing a Pipelined Processor
	Pipelining Troubles?
	Structure Hazards
	Data Hazards
	Data Hazard Solution
	Software Solution
	Code Scheduling to Avoid Stalls
	Code Scheduling to Avoid Stalls
	Forwarding (aka Bypassing)
	Data Hazards in ALU Instructions
	Data Hazard Solution: Forwarding
	Data Hazard Solution: Forwarding
	Dependencies & Forwarding
	Forwarding Paths
	Detecting the Need to Forward
	Detecting the Need to Forward
	Datapath with Forwarding
	Forwarding Conditions
	Hazard Conditions		
	Hazard Conditions		
	Double Data Hazard
	Revised Forwarding Condition
	Can't always forward
	Load-Use Data Hazard
	Load-Use Hazard Detection
	How to Stall the Pipeline
	Stall/Bubble in the Pipeline
	Stall/Bubble in the Pipeline
	Datapath with Hazard Detection
	Code Scheduling to Avoid Stalls
	Branch Hazards
	Branch Hazards
	Control Hazards
	Our Original Datapath
	Reduce Branch Delay�
	Stall on Branch
	Branch Prediction
	MIPS with Predict Not Taken
	Reducing Branch Delay
	Example: Branch Taken
	Example: Branch Taken
	Pipeline Summary
	Stalls and Performance

