
The Processor

Chapter 4
(Part II)

Baback Izadi
ECE Department
bai@engr.newpaltz.edu

SUNY – New Paltz
Elect. & Comp. Eng. 2

SUNY – New Paltz
Elect. & Comp. Eng. 2

Sequential Laundry

 Sequential laundry takes 8 hours for 4 loads

30 T
a
s
k

O
r
d
e
r

B

C

D

A
Time

30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

6 PM 7 8 9 10 11 12 1 2 AM

SUNY – New Paltz
Elect. & Comp. Eng. 3

SUNY – New Paltz
Elect. & Comp. Eng. 3

Pipelined Laundry
6 PM 7 8 9

Time

B

C

D

A

30 30 30 30 30 30 30

T
a
s
k

O
r
d
e
r

 Pipelined laundry: overlapping execution
 Parallelism improves performance

SUNY – New Paltz
Elect. & Comp. Eng. 4

SUNY – New Paltz
Elect. & Comp. Eng. 4

Pipelining Analogy

 Four loads:
 Speedup

= 8/3.5 = 2.3
 Non-stop:

 Speedup
= 2n/0.5n + 1.5 ≈ 4
= number of stages

 Pipelining doesn’t help latency of
single task, it helps throughput of
entire workload

 Multiple tasks operating
simultaneously using different
resources

 Potential speedup = Number pipe
stages

 Pipeline rate limited by slowest
pipeline stage

 Unbalanced lengths of pipe stages
reduces speedup

 Time to “fill” pipeline and time to
“drain” it reduces speedup

 Stall for dependencies

SUNY – New Paltz
Elect. & Comp. Eng. 5

SUNY – New Paltz
Elect. & Comp. Eng. 5

Single Stage VS. Pipeline Performance

I n s t r u c t i o n
f e t c h R e g A L U D a t a

a c c e s s R e g

8 n s I n s t r u c t i o n
f e t c h R e g A L U D a t a

a c c e s s R e g

8 n s I n s t r u c t i o n
f e t c h

 8 n s

T i m e

l w $ 1 , 1 0 0 ($ 0)

l w $ 2 , 2 0 0 ($ 0)

l w $ 3 , 3 0 0 ($ 0)

2 4 6 8 1 0 1 2 1 4 1 6 1 8

2 4 6 8 1 0 1 2 1 4

. . .

P r o g r a m
e x e c u t i o n
o r d e r
(i n i n s t r u c t i o n s)

I n s t r u c t i o n
f e t c h R e g A L U D a t a

a c c e s s R e g

T i m e

l w $ 1 , 1 0 0 ($ 0)

l w $ 2 , 2 0 0 ($ 0)

l w $ 3 , 3 0 0 ($ 0)

2 n s I n s t r u c t i o n
f e t c h R e g A L U D a t a

a c c e s s R e g

2 n s I n s t r u c t i o n
f e t c h R e g A L U D a t a

a c c e s s R e g

2 n s 2 n s 2 n s 2 n s 2 n s

P r o g r a m
e x e c u t i o n
o r d e r
(i n i n s t r u c t i o n s)

Instruction
Instr.

Memory
Register

Read
ALU
Op.

Data
Memory

Reg.
Write Total

R-format 2 1 2 0 1 6 ns
lw 2 1 2 2 1 8 ns
sw 2 1 2 2 7 ns
beq 2 1 2 5 ns

Single-cycle (Tc= 8ns)

Pipelined (Tc= 2ns)

SUNY – New Paltz
Elect. & Comp. Eng. 6

SUNY – New Paltz
Elect. & Comp. Eng. 6

MIPS Pipeline

 Five stages, one step per stage
1. IF: Instruction fetch from memory
2. ID: Instruction decode & register read
3. EX: Execute operation or calculate address
4. MEM: Access memory operand
5. WB: Write result back to register

SUNY – New Paltz
Elect. & Comp. Eng. 7

SUNY – New Paltz
Elect. & Comp. Eng. 7

Pipelining
 What makes it easy in MIPS
 All instructions are the same length
 Just a few instruction formats
 Memory operands appear only in loads and stores

 What makes it hard?
 Structural hazards: suppose we had only one memory
 Control hazards: need to worry about branch instructions
 Data hazards: an instruction depends on a previous instruction

 We’ll build a simple pipeline and look at these issues
 what makes it really hard for modern processors
 Exception handling
 Trying to improve performance with out-of-order execution

SUNY – New Paltz
Elect. & Comp. Eng. 8

SUNY – New Paltz
Elect. & Comp. Eng. 8

Pipeline Speedup

2 4 6 8 1 0 1 2 1 4

I n s t r u c t i o n
f e t c h R e g A L U D a t a

a c c e s s R e g

T i m e

l w $ 1 , 1 0 0 ($ 0)

l w $ 2 , 2 0 0 ($ 0)

l w $ 3 , 3 0 0 ($ 0)

2 n s I n s t r u c t i o n
f e t c h R e g A L U D a t a

a c c e s s R e g

2 n s I n s t r u c t i o n
f e t c h R e g A L U D a t a

a c c e s s R e g

2 n s 2 n s 2 n s 2 n s 2 n s

P r o g r a m
e x e c u t i o n
o r d e r
(i n i n s t r u c t i o n s)

SUNY – New Paltz
Elect. & Comp. Eng. 9

SUNY – New Paltz
Elect. & Comp. Eng. 9

The Five Stages of Load

 What do we need to add to actually split the datapath
into stages?

 Ifetch: Instruction Fetch
 Fetch the instruction from the Instruction Memory

 Reg/Dec: Registers Fetch and Instruction Decode
 Exec: Calculate the memory address
 Mem: Read the data from the Data Memory
 Wr: Write the data back to the register file

Ifetch Reg/Dec Exec Mem Wr LW

SUNY – New Paltz
Elect. & Comp. Eng. 10

SUNY – New Paltz
Elect. & Comp. Eng. 10

Basic Idea

I n s t r u c t i o n
m e m o r y

A d d r e s s

4

3 2

0

A d d A d d
r e s u l t

S h i f t
l e f t 2

I n s t r u c t i o n

M
u
x

0

1

A d d

P C

0 W r i t e
d a t a

M
u
x

1
R e g i s t e r s

R e a d
d a t a 1

R e a d
d a t a 2

R e a d
r e g i s t e r 1

R e a d
r e g i s t e r 2

1 6
S i g n

e x t e n d

W r i t e
r e g i s t e r

W r i t e
d a t a

R e a d
d a t a A d d r e s s

D a t a
m e m o r y

1

A L U
r e s u l t

M
u
x

A L U
Z e r o

I F : I n s t r u c t i o n f e t c h I D : I n s t r u c t i o n d e c o d e /
r e g i s t e r f i l e r e a d

E X : E x e c u t e /
a d d r e s s c a l c u l a t i o n

M E M : M e m o r y a c c e s s W B : W r i t e b a c k

SUNY – New Paltz
Elect. & Comp. Eng. 11

SUNY – New Paltz
Elect. & Comp. Eng. 11

Basic Idea

I n s t r u c t i o n
m e m o r y

A d d r e s s

4

3 2

0

A d d A d d
r e s u l t

S h i f t
l e f t 2

I n s t r u c t i o n

M
u
x

0

1

A d d

P C

0 W r i t e
d a t a

M
u
x

1
R e g i s t e r s

R e a d
d a t a 1

R e a d
d a t a 2

R e a d
r e g i s t e r 1

R e a d
r e g i s t e r 2

1 6
S i g n

e x t e n d

W r i t e
r e g i s t e r

W r i t e
d a t a

R e a d
d a t a A d d r e s s

D a t a
m e m o r y

1

A L U
r e s u l t

M
u
x

A L U
Z e r o

I F : I n s t r u c t i o n f e t c h I D : I n s t r u c t i o n d e c o d e /
r e g i s t e r f i l e r e a d

E X : E x e c u t e /
a d d r e s s c a l c u l a t i o n

M E M : M e m o r y a c c e s s W B : W r i t e b a c k

SUNY – New Paltz
Elect. & Comp. Eng. 12

SUNY – New Paltz
Elect. & Comp. Eng. 12

Pipelining and ISA Design

 MIPS ISA designed for pipelining
 All instructions are 32-bits
 Easier to fetch and decode in one cycle
 c.f. x86: 1- to 17-byte instructions

 Few and regular instruction formats
 Can decode and read registers in one step

 Load/store addressing
 Can calculate address in 3rd stage, access memory in 4th stage

 Alignment of memory operands
 Memory access takes only one cycle

SUNY – New Paltz
Elect. & Comp. Eng. 13

SUNY – New Paltz
Elect. & Comp. Eng. 13

Pipeline registers
 Need registers between stages
 To hold information produced in previous cycle

• Can you find a problem?
• What instructions can we execute to manifest the problem?

SUNY – New Paltz
Elect. & Comp. Eng. 14

SUNY – New Paltz
Elect. & Comp. Eng. 14

Pipeline Operation

 Cycle-by-cycle flow of instructions through the pipelined
datapath
 “Single-clock-cycle” pipeline diagram
 Shows pipeline usage in a single cycle
 Highlight resources used

 c.f. “multi-clock-cycle” diagram
 Graph of operation over time

 We’ll look at “single-clock-cycle” diagrams for load & store

SUNY – New Paltz
Elect. & Comp. Eng. 15

SUNY – New Paltz
Elect. & Comp. Eng.

IF for Load, Store, …

SUNY – New Paltz
Elect. & Comp. Eng. 16

SUNY – New Paltz
Elect. & Comp. Eng.

ID for Load, Store, …

SUNY – New Paltz
Elect. & Comp. Eng. 17

SUNY – New Paltz
Elect. & Comp. Eng.

EX for Load

SUNY – New Paltz
Elect. & Comp. Eng. 18

SUNY – New Paltz
Elect. & Comp. Eng.

MEM for Load

SUNY – New Paltz
Elect. & Comp. Eng. 19

SUNY – New Paltz
Elect. & Comp. Eng.

WB for Load

Wrong
register
number

SUNY – New Paltz
Elect. & Comp. Eng. 20

SUNY – New Paltz
Elect. & Comp. Eng.

Corrected Datapath for Load

SUNY – New Paltz
Elect. & Comp. Eng. 21

SUNY – New Paltz
Elect. & Comp. Eng.

EX for Store

SUNY – New Paltz
Elect. & Comp. Eng. 22

SUNY – New Paltz
Elect. & Comp. Eng.

MEM for Store

SUNY – New Paltz
Elect. & Comp. Eng. 23

SUNY – New Paltz
Elect. & Comp. Eng.

WB for Store

SUNY – New Paltz
Elect. & Comp. Eng. 24

SUNY – New Paltz
Elect. & Comp. Eng. 24

Graphically Representing Pipelines

Can help with answering questions like:
 How many cycles does it take to execute this code?
 What is the ALU doing during cycle 4?
 Use this representation to help understand datapaths

I M R e g D M R e g

I M R e g D M R e g

C C 1 C C 2 C C 3 C C 4 C C 5 C C 6

T i m e (i n c l o c k c y c l e s)

l w $ 1 0 , 2 0 ($ 1)

P r o g r a m
e x e c u t i o n
o r d e r
(i n i n s t r u c t i o n s)

s u b $ 1 1 , $ 2 , $ 3

A L U

A L U

SUNY – New Paltz
Elect. & Comp. Eng. 25

SUNY – New Paltz
Elect. & Comp. Eng. 25

Why Pipeline?

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
L

U

Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

A
L

U

Im Reg Dm Reg
A

L
U

Im Reg Dm Reg

A
L

U

Im Reg Dm Reg

SUNY – New Paltz
Elect. & Comp. Eng. 26

SUNY – New Paltz
Elect. & Comp. Eng. 26

Multi-Cycle Pipeline Diagram
 Form showing resource usage

SUNY – New Paltz
Elect. & Comp. Eng. 27

SUNY – New Paltz
Elect. & Comp. Eng. 27

Single-Cycle Pipeline Diagram
 State of pipeline in a given cycle

SUNY – New Paltz
Elect. & Comp. Eng. 28

SUNY – New Paltz
Elect. & Comp. Eng.

Pipelined Control (Simplified)

SUNY – New Paltz
Elect. & Comp. Eng. 29

SUNY – New Paltz
Elect. & Comp. Eng. 29

Pipeline Control

 We have 5 stages.
 What needs to be controlled in each stage?
 Instruction Fetch and PC Increment
 Instruction Decode / Register Fetch
 Execution
 Memory Stage
 Write Back

 How would control be handled in an automobile plant?
 A fancy control center telling everyone what to do?
 Should we use a finite state machine?

SUNY – New Paltz
Elect. & Comp. Eng. 30

SUNY – New Paltz
Elect. & Comp. Eng. 30

Pipeline Control
 Control signals derived from instruction
 As in single-cycle implementation

 Pass control signals along just like the data

Execution/Address Calculation
stage control lines

Memory access stage
control lines

Write-back
stage control

lines

Instruction
Reg
Dst

ALU
Op1

ALU
Op0

ALU
Src Branch

Mem
Read

Mem
Write

Reg
write

Mem to
Reg

R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

C o n t r o l

E X

M

W B

M

W B

W B

I F / I D I D / E X E X / M E M M E M / W B

I n s t r u c t i o n

SUNY – New Paltz
Elect. & Comp. Eng. 31

SUNY – New Paltz
Elect. & Comp. Eng.

Pipelined Control

SUNY – New Paltz
Elect. & Comp. Eng. 32

SUNY – New Paltz
Elect. & Comp. Eng. 32

Designing a Pipelined Processor

 Go back and examine your datapath and control diagram
 Associated resources with states
 Ensure that flows do not conflict, or figure out how to resolve
 Assert control in appropriate stage

SUNY – New Paltz
Elect. & Comp. Eng. 33

SUNY – New Paltz
Elect. & Comp. Eng. 33

Pipelining Troubles?
 Pipeline Hazards
 Situations that prevent starting the next instruction in the next cycle
 Structural hazards: attempt to use the same resource two different

ways at the same time.
 Data hazards: attempt to use item before it is ready.
 Instruction depends on result of prior instruction still in the pipeline.

 Control hazards: attempt to make a decision before condition is
evaluated.
Branch instructions

 Can always resolve hazards by waiting.
 Pipeline control must detect the hazard.
 Take action (or delay action) to resolve hazards.

SUNY – New Paltz
Elect. & Comp. Eng. 34

SUNY – New Paltz
Elect. & Comp. Eng. 34

Structure Hazards

 Conflict for use of a resource
 In MIPS pipeline with a single memory
 Load/store requires data access
 Instruction fetch would have to stall for that cycle
 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require separate instruction/data
memories
 Or separate instruction/data caches

SUNY – New Paltz
Elect. & Comp. Eng. 35

SUNY – New Paltz
Elect. & Comp. Eng. 35

Data Hazards
 Problem with starting next instruction before first is finished
 Dependencies that “go backward in time” are data hazards

I M R e g

I M R e g

C C 1 C C 2 C C 3 C C 4 C C 5 C C 6

T i m e (i n c l o c k c y c l e s)

s u b $ 2 , $ 1 , $ 3

P r o g r a m
e x e c u t i o n
o r d e r
(i n i n s t r u c t i o n s)

a n d $ 1 2 , $ 2 , $ 5

I M R e g D M R e g

I M D M R e g

I M D M R e g

C C 7 C C 8 C C 9

1 0 1 0 1 0 1 0 1 0 / – 2 0 – 2 0 – 2 0 – 2 0 – 2 0

o r $ 1 3 , $ 6 , $ 2

a d d $ 1 4 , $ 2 , $ 2

s w $ 1 5 , 1 0 0 ($ 2)

V a l u e o f
r e g i s t e r $ 2 :

D M R e g

R e g

R e g

R e g

D M

SUNY – New Paltz
Elect. & Comp. Eng. 36

SUNY – New Paltz
Elect. & Comp. Eng. 36

Data Hazard Solution
 An instruction depends on completion of data access by a

previous instruction
 add $s0, $t0, $t1
sub $t2, $s0, $t3

nop

nop

SUNY – New Paltz
Elect. & Comp. Eng. 37

SUNY – New Paltz
Elect. & Comp. Eng. 37

Software Solution

 Have compiler guarantee no hazards
 Where should compiler insert “nop” instructions?

 sub $2, $1, $3
 and $12, $2, $5
 or $13, $6, $2
 add $14, $2, $2
 sw $15, 100($2)

 Problem:
 It happens too often to rely on compiler
 It really slows us down!

SUNY – New Paltz
Elect. & Comp. Eng. 38

SUNY – New Paltz
Elect. & Comp. Eng. 38

Code Scheduling to Avoid Stalls
 C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

11 cycles not counting the dependencies

I M R e g

I M R e g

I M R e g D M R e g

I M D M R e g

I M D M R e g

D M R e g

R e g

R e g

R e g

D M

I M D M R e g

I M D M R e g R e g

R e g

SUNY – New Paltz
Elect. & Comp. Eng. 39

SUNY – New Paltz
Elect. & Comp. Eng. 39

Code Scheduling to Avoid Stalls
 Reorder code to avoid use of load result in the next instruction

 C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

nop

nop

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

nop

nop

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

nop

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

12 cycles 15 cycles

SUNY – New Paltz
Elect. & Comp. Eng. 40

SUNY – New Paltz
Elect. & Comp. Eng. 40

Forwarding (aka Bypassing)
 Use result when it is computed
 Don’t wait for it to be stored in a register
 Requires extra connections in the datapath

SUNY – New Paltz
Elect. & Comp. Eng. 41

SUNY – New Paltz
Elect. & Comp. Eng. 41

Data Hazards in ALU Instructions

 Consider this sequence:
 sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

 We can resolve hazards with forwarding
 How do we detect when to forward?

§4.7 D
ata H

azards: Forw
arding vs. S

talling

SUNY – New Paltz
Elect. & Comp. Eng. 42

SUNY – New Paltz
Elect. & Comp. Eng. 42

Data Hazard Solution: Forwarding
 Use temporary results (ALU forwarding), don’t wait for them to be

written
 Also, write register file during 1st half of clock and read during 2nd

half

what if this $2 was $13?

I M R e g

I M R e g

C C 1 C C 2 C C 3 C C 4 C C 5 C C 6

T i m e (i n c l o c k c y c l e s)

s u b $ 2 , $ 1 , $ 3

P r o g r a m
e x e c u t i o n o r d e r
(i n i n s t r u c t i o n s)

a n d $ 1 2 , $ 2 , $ 5

I M R e g D M R e g

I M D M R e g

I M D M R e g

C C 7 C C 8 C C 9

1 0 1 0 1 0 1 0 1 0 / – 2 0 – 2 0 – 2 0 – 2 0 – 2 0

o r $ 1 3 , $ 6 , $ 2

a d d $ 1 4 , $ 2 , $ 2

s w $ 1 5 , 1 0 0 ($ 2)

V a l u e o f r e g i s t e r $ 2 :

D M R e g

R e g

R e g

R e g

X X X – 2 0 X X X X X V a l u e o f E X / M E M :
X X X X – 2 0 X X X X V a l u e o f M E M / W B :

D M

SUNY – New Paltz
Elect. & Comp. Eng. 43

SUNY – New Paltz
Elect. & Comp. Eng. 43

Data Hazard Solution: Forwarding

what if this $2 was $13?

I M R e g

I M R e g

C C 1 C C 2 C C 3 C C 4 C C 5 C C 6

T i m e (i n c l o c k c y c l e s)

s u b $ 2 , $ 1 , $ 3

P r o g r a m
e x e c u t i o n o r d e r
(i n i n s t r u c t i o n s)

a n d $ 1 2 , $ 2 , $ 5

C C 7 C C 8 C C 9

1 0 1 0 1 0 1 0 1 0 / – 2 0 – 2 0 – 2 0 – 2 0 – 2 0

o r $ 1 3 , $ 6 , $ 2

a d d $ 1 4 , $ 2 , $ 2

s w $ 1 5 , 1 0 0 ($ 2)

V a l u e o f r e g i s t e r $ 2 :

D M R e g

R e g

X X X – 2 0 X X X X X V a l u e o f E X / M E M :
X X X X – 2 0 X X X X V a l u e o f M E M / W B :

D M

SUNY – New Paltz
Elect. & Comp. Eng. 44

SUNY – New Paltz
Elect. & Comp. Eng.

Dependencies & Forwarding

SUNY – New Paltz
Elect. & Comp. Eng. 45

SUNY – New Paltz
Elect. & Comp. Eng.

Forwarding Paths

SUNY – New Paltz
Elect. & Comp. Eng. 46

SUNY – New Paltz
Elect. & Comp. Eng. 46

Detecting the Need to Forward

 Pass register numbers along pipeline
 e.g., ID/EX.RegisterRs = register number for Rs sitting in

ID/EX pipeline register

 ALU operand register numbers in EX stage are given by
 ID/EX.RegisterRs, ID/EX.RegisterRt

 Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from
EX/MEM
pipeline reg

Fwd from
MEM/WB
pipeline reg

SUNY – New Paltz
Elect. & Comp. Eng. 47

SUNY – New Paltz
Elect. & Comp. Eng. 47

Detecting the Need to Forward

 But only if forwarding instruction will write to a register!
 EX/MEM.RegWrite, MEM/WB.RegWrite

 And only if Rd for that instruction is not $zero
 EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0

SUNY – New Paltz
Elect. & Comp. Eng. 48

SUNY – New Paltz
Elect. & Comp. Eng.

Datapath with Forwarding
00 Register file

 01 Mem. or earlier ALU

10 Prior ALU

SUNY – New Paltz
Elect. & Comp. Eng. 49

SUNY – New Paltz
Elect. & Comp. Eng. 49

Forwarding Conditions

 EX hazard
 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 10

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 10

 MEM hazard
 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

SUNY – New Paltz
Elect. & Comp. Eng. 50

SUNY – New Paltz
Elect. & Comp. Eng. 50

Hazard Conditions
 Steer the result from previous instruction to the ALU

 EX hazard
if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd ≠0)
and (EX /MEM.RegisterRd = ID/EX.RegisterRs)) ForwardA = 10
if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd ≠0)
and (EX /MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10

P C I n s t r u c t i o n
m e m o r y

R e g i s t e r s

M
u
x

M
u
x

C o n t r o l

A L U

E X

M

W B

M

W B

W B

I D / E X

E X / M E M

M E M / W B

D a t a
m e m o r y

M
u
x

F o r w a r d i n g
u n i t

I F / I D

I n
 s t r

 u c
 t i o

 n

M
u
x

R d
E X / M E M . R e g i s t e r R d

M E M / W B . R e g i s t e r R d

R t
R t
R s

I F / I D . R e g i s t e r R d
I F / I D . R e g i s t e r R t
I F / I D . R e g i s t e r R t
I F / I D . R e g i s t e r R s

00 Register file

 01 Mem. or earlier ALU

10 Prior ALU

SUNY – New Paltz
Elect. & Comp. Eng. 51

SUNY – New Paltz
Elect. & Comp. Eng. 51

Hazard Conditions
 Steer the result from precious instruction to the ALU

 MEM hazard
if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd ≠0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01
if (MEM/WB.RegWrite
and (MEM/WB.RegisterRd ≠0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

P C I n s t r u c t i o n
m e m o r y

R e g i s t e r s

M
u
x

M
u
x

C o n t r o l

A L U

E X

M

W B

M

W B

W B

I D / E X

E X / M E M

M E M / W B

D a t a
m e m o r y

M
u
x

F o r w a r d i n g
u n i t

I F / I D

I n
 s t r

 u c
 t i o

 n

M
u
x

R d
E X / M E M . R e g i s t e r R d

M E M / W B . R e g i s t e r R d

R t
R t
R s

I F / I D . R e g i s t e r R d
I F / I D . R e g i s t e r R t
I F / I D . R e g i s t e r R t
I F / I D . R e g i s t e r R s

SUNY – New Paltz
Elect. & Comp. Eng. 52

SUNY – New Paltz
Elect. & Comp. Eng. 52

Double Data Hazard

 Consider the sequence:
 add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

 Both hazards occur
 Want to use the most recent

 Revise MEM hazard condition
 Only fwd if EX hazard condition isn’t true

I M R e g D M R e g

I M D M R e g

I M D M R e g R e g

R e g

SUNY – New Paltz
Elect. & Comp. Eng. 53

SUNY – New Paltz
Elect. & Comp. Eng. 53

Revised Forwarding Condition

 MEM hazard
 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

 ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)

 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

 ForwardB = 01

SUNY – New Paltz
Elect. & Comp. Eng. 54

SUNY – New Paltz
Elect. & Comp. Eng. 54

Can't always forward
 lw can still cause a hazard:
 An instruction tries to read a register following a load

instruction that writes to the same register.

 Thus, we need a hazard detection unit to “stall” the

load instruction

R e g

I M

R e g

R e g

I M

C C 1 C C 2 C C 3 C C 4 C C 5 C C 6
T i m e (i n c l o c k c y c l e s)

l w $ 2 , 2 0 ($ 1)

P r o g r a m
e x e c u t i o n
o r d e r
(i n i n s t r u c t i o n s)

a n d $ 4 , $ 2 , $ 5

I M R e g D M R e g

I M D M R e g

I M D M R e g

C C 7 C C 8 C C 9

o r $ 8 , $ 2 , $ 6

a d d $ 9 , $ 4 , $ 2

s l t $ 1 , $ 6 , $ 7

D M R e g

R e g

R e g

D M

Need to stall
for one cycle

SUNY – New Paltz
Elect. & Comp. Eng. 55

SUNY – New Paltz
Elect. & Comp. Eng. 55

Load-Use Data Hazard
 Can’t always avoid stalls by forwarding
 If value not computed when needed
 Can’t forward backward in time!

SUNY – New Paltz
Elect. & Comp. Eng. 56

SUNY – New Paltz
Elect. & Comp. Eng. 56

Load-Use Hazard Detection

 Check when using instruction is decoded in ID stage
 ALU operand register numbers in ID stage are given by
 IF/ID.RegisterRs, IF/ID.RegisterRt

 Load-use hazard when
 ID/EX.MemRead and

 ((ID/EX.RegisterRt = IF/ID.RegisterRs) or
 (ID/EX.RegisterRt = IF/ID.RegisterRt))

 If detected, stall and insert bubble

SUNY – New Paltz
Elect. & Comp. Eng. 57

SUNY – New Paltz
Elect. & Comp. Eng. 57

How to Stall the Pipeline

 Force control values in ID/EX register to 0
 EX, MEM and WB do nop (no-operation)

 Prevent update of PC and IF/ID register
 Using instruction is decoded again
 Following instruction is fetched again
 1-cycle stall allows MEM to read data for lw
 Can subsequently forward to EX stage

SUNY – New Paltz
Elect. & Comp. Eng. 58

SUNY – New Paltz
Elect. & Comp. Eng.

Stall/Bubble in the Pipeline

Stall inserted
here

SUNY – New Paltz
Elect. & Comp. Eng. 59

SUNY – New Paltz
Elect. & Comp. Eng.

Stall/Bubble in the Pipeline

Or, more
accurately…

SUNY – New Paltz
Elect. & Comp. Eng. 60

SUNY – New Paltz
Elect. & Comp. Eng.

Datapath with Hazard Detection
 Stall by letting an instruction that won’t write anything go forward
 Controls writing of the PC and IF/ID plus MUX

SUNY – New Paltz
Elect. & Comp. Eng. 61

SUNY – New Paltz
Elect. & Comp. Eng. 61

Code Scheduling to Avoid Stalls
 Revisiting reordering code to avoid use of load result in the next

instruction

 C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

nop

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

nop

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles

13 cycles

SUNY – New Paltz
Elect. & Comp. Eng. 62

SUNY – New Paltz
Elect. & Comp. Eng.

Branch Hazards
Branch decision is made

SUNY – New Paltz
Elect. & Comp. Eng. 63

SUNY – New Paltz
Elect. & Comp. Eng. 63

Branch Hazards
 When decide to branch, other instructions may be in the pipeline!
 If branch outcome determined in MEM

§4.8 C
ontrol H

azards

PC

Flush these
instructions
(Set control
values to 0)

SUNY – New Paltz
Elect. & Comp. Eng. 64

SUNY – New Paltz
Elect. & Comp. Eng. 64

Control Hazards

 Branch determines flow of control
 Fetching next instruction depends on branch outcome
 Pipeline can’t always fetch correct instruction
 Still working on ID stage of branch

 In MIPS pipeline
 Need to compare registers and compute target early in the pipeline
 Add hardware to do it in ID stage

SUNY – New Paltz
Elect. & Comp. Eng. 65

SUNY – New Paltz
Elect. & Comp. Eng. 65

Our Original Datapath

P C

I n s t r u c t i o n
m e m o r y

I n
 s t

 r u
 c t

 i o
 n

A d d

I n s t r u c t i o n
[2 0 – 1 6]

M
 e m

 t o
 R

 e g

A L U O p

B r a n c h

R e g D s t

A L U S r c

4

1 6 3 2 I n s t r u c t i o n
[1 5 – 0]

0

0

M
u
x

0

1

A d d A d d
r e s u l t

R e g i s t e r s
W r i t e
r e g i s t e r

W r i t e
d a t a

R e a d
d a t a 1

R e a d
d a t a 2

R e a d
r e g i s t e r 1

R e a d
r e g i s t e r 2

S i g n
e x t e n d

M
u
x
1

A L U
r e s u l t

Z e r o

W r i t e
d a t a

R e a d
d a t a M

u
x

1

A L U
c o n t r o l

S h i f t
l e f t 2 R

 e g
 W

 r i t
 e

M e m R e a d

C o n t r o l

A L U

I n s t r u c t i o n
[1 5 – 1 1]

6

E X

M

W B

M

W B

W B I F / I D

P C S r c

I D / E X

E X / M E M

M E M / W B

M
u
x

0

1

M
 e m

 W
 r i t

 e

A d d r e s s
D a t a

m e m o r y

A d d r e s s

SUNY – New Paltz
Elect. & Comp. Eng. 66

SUNY – New Paltz
Elect. & Comp. Eng. 66

Reduce Branch Delay

P C I n s t r u c t i o n
m e m o r y

4

R e g i s t e r s

M
u
x

M
u
x

M
u
x

A L U

E X

M

W B

M

W B

W B

I D / E X

0

E X / M E M

M E M / W B

D a t a
m e m o r y

M
u
x

H a z a r d
d e t e c t i o n

u n i t

F o r w a r d i n g
u n i t

I F . F l u s h

I F / I D

S i g n
e x t e n d

C o n t r o l

M
u
x

=

S h i f t
l e f t 2

M
u
x

SUNY – New Paltz
Elect. & Comp. Eng. 67

SUNY – New Paltz
Elect. & Comp. Eng. 67

Stall on Branch
 One solution: Wait until branch outcome determined before

fetching next instruction
 Another solution: flush the pipe if branch is taken – only one

delay penalty.

SUNY – New Paltz
Elect. & Comp. Eng. 68

SUNY – New Paltz
Elect. & Comp. Eng. 68

Branch Prediction

 Longer pipelines can’t readily determine branch outcome early
 Stall penalty becomes unacceptable

 Predict outcome of branch
 Only stall if prediction is wrong

 In MIPS pipeline
 Can predict branches not taken
 Fetch instruction after branch, with no delay
 Need to add hardware for flushing instructions if we are wrong

SUNY – New Paltz
Elect. & Comp. Eng. 69

SUNY – New Paltz
Elect. & Comp. Eng.

MIPS with Predict Not Taken

Prediction
correct

Prediction
incorrect

SUNY – New Paltz
Elect. & Comp. Eng. 70

SUNY – New Paltz
Elect. & Comp. Eng. 70

Reducing Branch Delay

 Move hardware to determine outcome to ID stage
 Target address adder
 Register comparator

 Example: branch taken
 36: sub $10, $4, $8

40: beq $1, $3, 7
44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7
 ...
72: lw $4, 50($7)

SUNY – New Paltz
Elect. & Comp. Eng. 71

SUNY – New Paltz
Elect. & Comp. Eng.

Example: Branch Taken

SUNY – New Paltz
Elect. & Comp. Eng. 72

SUNY – New Paltz
Elect. & Comp. Eng.

Example: Branch Taken

48

SUNY – New Paltz
Elect. & Comp. Eng. 73

SUNY – New Paltz
Elect. & Comp. Eng. 73

Pipeline Summary

 Pipelining improves performance by increasing instruction
throughput
 Executes multiple instructions in parallel
 Each instruction has the same latency

 Subject to hazards
 Structure, data, control

 Instruction set design affects complexity of pipeline
implementation

The BIG Picture

SUNY – New Paltz
Elect. & Comp. Eng. 74

SUNY – New Paltz
Elect. & Comp. Eng. 74

Stalls and Performance

 Stalls reduce performance
 But are required to get correct results

 Compiler can arrange code to avoid hazards and stalls
 Requires knowledge of the pipeline structure

The BIG Picture

	Chapter 4�(Part II)
	Sequential Laundry
	Pipelined Laundry
	Pipelining Analogy
	Single Stage VS. Pipeline Performance
	MIPS Pipeline
	Pipelining
	Pipeline Speedup
	The Five Stages of Load
	Basic Idea
	Basic Idea
	Pipelining and ISA Design
	Pipeline registers
	Pipeline Operation
	IF for Load, Store, …
	ID for Load, Store, …
	EX for Load
	MEM for Load
	WB for Load
	Corrected Datapath for Load
	EX for Store
	MEM for Store
	WB for Store
	Graphically Representing Pipelines
	Why Pipeline?
	Multi-Cycle Pipeline Diagram
	Single-Cycle Pipeline Diagram
	Pipelined Control (Simplified)
	Pipeline Control
	Pipeline Control
	Pipelined Control
	Designing a Pipelined Processor
	Pipelining Troubles?
	Structure Hazards
	Data Hazards
	Data Hazard Solution
	Software Solution
	Code Scheduling to Avoid Stalls
	Code Scheduling to Avoid Stalls
	Forwarding (aka Bypassing)
	Data Hazards in ALU Instructions
	Data Hazard Solution: Forwarding
	Data Hazard Solution: Forwarding
	Dependencies & Forwarding
	Forwarding Paths
	Detecting the Need to Forward
	Detecting the Need to Forward
	Datapath with Forwarding
	Forwarding Conditions
	Hazard Conditions		
	Hazard Conditions		
	Double Data Hazard
	Revised Forwarding Condition
	Can't always forward
	Load-Use Data Hazard
	Load-Use Hazard Detection
	How to Stall the Pipeline
	Stall/Bubble in the Pipeline
	Stall/Bubble in the Pipeline
	Datapath with Hazard Detection
	Code Scheduling to Avoid Stalls
	Branch Hazards
	Branch Hazards
	Control Hazards
	Our Original Datapath
	Reduce Branch Delay�
	Stall on Branch
	Branch Prediction
	MIPS with Predict Not Taken
	Reducing Branch Delay
	Example: Branch Taken
	Example: Branch Taken
	Pipeline Summary
	Stalls and Performance

