

EGC220 Digital Logic Fundamentals

Test 2

For full credit, you need to show your work. <u>Closed Book and Notes</u>

	100		
First Name:_	Ke y	Last Name:	

- For full credit, you need to show complete work and answer the questions as directed.
- Your submission must be in a single PDF file
- Make sure you submit before the deadline of 3:15 PM. I will not accept late submission by email.
- You must adhere to the honor code. Any evidence of misconduct will be dealt with strictly per syllabus.

1)

a. Develop the truth table only of a combinational circuit that multiplies $A \times B$, where A and B are multi-bit inputs. The range of input A is from 1 to 2 and the range of input B is from 0 to 2. range of input B is from 0 to 2. \longrightarrow 2xz = 4 — b. Implement the design using a decoder and external OR gates.

A	Ao	B	Bo	1	72 71 70
0	0	0	0	1	1
0	0	0	1		
0	0	1	0		X
0	0	1	1		, \
0	1	0	0		000
0	1	0	1		001
0	1	1	0		0 1 0
0	1	1	1		XXX
1	0	P	0		000
1	0	0	1		0 1 0
١	0	1	0		100
1	0	1	1		\times \times \times
1	1	Q	0		
1	1	0	1		
1	1	1	0		X
1	1	1	1		

2) Design an all-NAND circuit that has 4 inputs, labeled A, B, C and D, and one output F. The output is 1 if and only if the \underline{BCD} input combination is divisible by 3 (dividing the number by 3 will result in 0 remainder) or divisible by 2 i.e. 0101 represents 5 which is not divisible by 3 or by 2 (F =0) and 1001 represents 9, which is divisible by 3 (F=1), even though it is not divisible by 2. 0 is technically divisible both by 3 and 2.

ABCD	F
0000	1
0001	0
0010	1
0011	1
0100	1
0101	0
0119	l
0111	0
1000	1
1001	1
10.10	
1011	8
1199	\/
1101	X
1110	
() ()	1 1

15 PT.

3) Using a 4×1 multiplexer, design a circuit for the following function. Assign A and B to the select lines. $F(A,B,C) = \sum_{i=1}^{n} m(0,3,6,7)$

$$F(A,B,C) = \sum m(0, 3, 6, 7)$$

ABCIF	
00017	
001010	
010010	$C-I_0$
01111	C- 11
1000	17/12
1010)4	tg +3 5150
11011	
11/11/1	AB
1 1	

15 PT.

4) Implement the following functions using a <u>PAL</u> (programmable AND array and Fixed OR array). Make sure to mark each fixed connection with ● and each fused connection with ×.

5) Complete the following timing diagram for the given device.

15 PT.

6) Using S-R flip-flops, design a ripple counter that counts from 3 to 5 and repeat.

