

EGC220 Digital Logic Fundamentals

Test 1

For full credit, you need to show your work. Closed Book and Notes

First Name:	Key	Last Name:	

- Your submission must be in a single PDF file
- Make sure you submit before the deadline of 3:15 PM. I will not accept late submission by email.
- You must adhere to the honor code. Any evidence of misconduct will be dealt with strictly per syllabus.

1) Convert (30.25)₁₀ to base 2 and 16.

15 PT.

2) Perform the following operations in the indicated base.

a.
$$(2.3)_{6} + (15.2)_{6}$$

$$(21.5)_{6}$$

b.
$$2\frac{3+6}{(34.3)6}$$

$$\frac{-(25.5)6}{(4.4)6}$$

4.4)6

c.
$$(4.3)_6$$
 $(4.3)_6$ $($

3) Perform (57)₁₀ – (74)₁₀ operations in binary, assuming signed 2's complement notation.

- 4) What does the following binary numbers represent in
 - a. Unsigned domain
 - b. Signed magnitude
 - c. Signed 2's complement

6432168	Unsigned	Signed magnitude	Signed 2's complement
≤ 00111101	61	+61	+61
11010110	214	-86	-42
128	-00/0/0/0		

5) Find the Boolean equation for the following circuit. You do not need to simplify the function. However, there should not be a bar over more than one term.

7) Implement the following function using all NAND gates.

$$F = C + \overline{A}D + A\overline{B},$$

10 PT.

8) Implement the following function using all NOR gates

$$F = C(A + \overline{D})(\overline{A} + B),$$

- 9) For the following function $F(A, B, C) = \overline{A} \overline{B} + BC + \overline{A} \overline{B} \overline{C}$
 - Make a truth table
 - Using Boolean algebra simplify the function

b. Usin	ig Boolean algebra simplify the function.	BC (A
ABCIF	- F= ABC+ABC+	
00011		1
001/1	AB (C+c)	AB (C+c)
01011	AB	ĀB
01111		
1000	\overline{A} $(\overline{B}+B)$	
1010	$\frac{1}{2}\sqrt{1}$	
1100	/+	
1111	F= A+BC	

15 PT.

- 9) For Boolean expression $F(A, B, C, D) = \prod M(7, 8, 12,13,15) + d(0, 2, 5, 10, 14),$ determine
 - Sum of Min terms.
 - b. Minimum sum of products.
 - c. Minimum products of sums.

$$\frac{a'}{F} = 2 m (13,4,69,11) + d(0,2,5,0,14)$$

 $\frac{b}{F} = \widehat{A} \widehat{D} + \widehat{B} \widehat{D}$

$$F = BD + AD$$

$$F = (B + D)(A + D)$$

