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EGC220 -  Digital Logic Fundamentals 
 

VERILOG Hardware Description Language - 1 
 

Hardware description language is a text based programming language that is used to model a 
piece of hardware. VERILOG is a hardware Description Language; a textual format for 
describing electronic circuits and systems. It was first developed by Gateway DESIGN 
Automation  in 1984, and later was acquired by Cadence Design Systems in 1989.  In 1995 
VERILOG was adopted as an IEEE standard (1364). An enhanced version was published in 
2001.  Even though originally it was intended for simulation and verification of digital circuits 
only, in recent years CAD tools are used to synthesize the VERILOG code into a hardware 
implementation of the described circuit. A logic circuit can conveniently be described by a 
VERILOG source code. The VERILOG compiler translates this code into a logic circuit.  
 
VERILOG allows the designer to represent circuits in two different ways: structural 
representation, and behavioral representation. At the structural level, the levels of abstraction 
are at the module level, the gate level, the switch level (transistor) or the circuit level. In 
behavioral representation, a circuit is described by its input/output response, or by logic 
expressions and programming constructs that defines the behavior of the circuit.  

A design is described in VERILOG using the concept of a module. A module can be 
conceptualized as consisting of two parts, the port declarations and the module body. The port 
declarations represent the external interface to the module (I/O ports). The module body 
represents the internal description of the module - its behavior, its structure, or a mixture of 
both. Each PORT has an associated mode that specifies whether it is an input (input) to the 
module or an output (output) from the module or inout (bidirectional). Each port represents a 
signal; hence it has an associated type.  

VERILOG is case sensitive and all keywords in VERILOG use lower case letters. The names 
of modules and signals follow two simple rules: the name must start with a letter and it can 
contain any letter or number, as well as the underscore ‘_’ and ‘$’ characters. It cannot be a 
VERILOG keyword. VERILOG allows multiple statements on a single line. Each statement 
ends with a semicolon. Space, Tab and blank lines are ignored. Comment starts with the double 
slash “//” character and continues to the end of the line. Multi line comments can be introduced 
with in the tokens “/*” and “*/” as in C language. 
 
VERILOG uses 4 valued logic: 0, 1, x and z, where x represents don’t care and z represents 
high impedance condition. VERILOG has built-in support for the commonly used logic 
functions: and, or, not, xor, xnor, nand, and nor. A logic function is represented by its functional 
name, followed by the output, and inputs in parentheses, in that order. For example, the 
statement  
“and (f,a,b)” represents a logical 2-input AND  function that generates the output f = AB. 

A Simple Design 

Let's imagine we want to describe an and-or-invert (AOI) gate in Verilog. 
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Figure 1: An AOI gate module 

// Verilog code for AND-OR-INVERT gate 
module AOI (input A, B, C, D, output F); 
  assign F = ~((A & B) | (C & D)); 
endmodule 
// end of Verilog code 

OK, that's the code. Let's dissect it line by line... 

Comments 

// Verilog code for AND-OR-INVERT gate 

Like all programming languages, Verilog supports comments. There are two types of comment 
in Verilog, line comments and block comments; we will look at line comments for now. 
Comments are not part of the Verilog design, but allow the user to make notes referring to the 
Verilog code, usually as an aid to understanding it. Here the comment is a “header” that tells us 
that the Verilog describes an AOI gate. It is no more than an aide de memoire in this case. A 
Verilog compiler will ignore this line of Verilog. Two forward slashes mark the start of a line 
comment, which is ignored by the Verilog compiler. A line comment can be on a separate line 
or at the end of a line of Verilog code, but in any case stops at the end of the line. 

Module and Port declarations 

module AOI (input A, B, C, D, output F); 

The name of the module is just an arbitrary label invented by the user. It does not correspond to 
a name pre-defined in a Verilog component library. module is a Verilog keyword. This line 
defines the start of a new Verilog module definition. All of the input and output ports of the 
module must appear in parentheses after the module name. The ordering of ports is not 
important for the module definition per se, although it is conventional to specify input ports 
first. 

A port may correspond to a pin on an IC, an edge connector on a board, or any logical channel 
of communication with a block of hardware. The port declarations include the names of the 
ports ( e.g., A, B ), and the direction that information is allowed to flow through the ports (input, 
output or inout). 
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endmodule 

endmodule 

The module definition is terminated by the Verilog keyword endmodule. 

Functionality 

Well, that's the interface to the module taken care of, but what about its functionality? 

assign F = ~((A & B) | (C & D)); 

In this module body, there is but one statement, and all the names referenced in this statement 
are in fact the ports of the design. Because all of the names used in the module body are 
declared in the module header and port declarations, there are no further declarations for 
internal elements required in the module body. assign is a Verilog keyword. It denotes a 
concurrent continuous assignment, which describes the functionality of the module. The 
concurrent assignment executes whenever one of the four ports A, B, C or D change value. The 
~, & and | symbols represent the bit-wise not, and and or operators respectively, which are built 
in to the Verilog language. That's it! That's all there is to describing the functionality of an AOI 
gate in Verilog. 

// end of Verilog code 

Another Verilog comment, and that's the end of a Verilog description for an AOI gate. 

Verilog 1995 

The above example is written using Verilog-2001 syntax. Many people continue to use the 1995 
syntax, which is still allowed in Verilog-2001. In Verilog-1995 the module header would look 
like this: 

module AOI (A, B, C, D, F); 
  input A, B, C, D; 
  output F; 

Note that the port names are listed after the module name, and declared as inputs and outputs in 
separate statements. The port declarations must repeat the names of the ports in the module 
header. 

Wires 

The module shown on the “Modules” page, was simple enough to describe using a continuous 
assignment where the output was a function of the inputs. Usually, modules are more complex 
than this, and internal connections are required. To make a continuous assignment to an internal 
signal, the signal must first be declared as a wire. 
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A Verilog wire represents an electrical connection. 

 

Figure 2: Internal signals of an AOI gate module 

// Verilog code for AND-OR-INVERT gate 
module AOI (input A, B, C, D, output F); 
  wire F;  // the default 
  wire AB, CD, O;  // necessary 
 
  assign AB = A & B; 
  assign CD = C & D; 
  assign O = AB | CD; 
  assign F = ~O; 
endmodule 
// end of Verilog code 

OK, that's the code. Let's examine it a little more closely... 

Wire Declarations 

wire AB, CD, O; 

This is the syntax for a wire declaration. A wire declaration looks like a Verilog-1995 style port 
declaration, with a type (wire), an optional vector width and a name or list of names. You can 
create separate wire declarations if you wish, for example: 

wire AB, CD; 
wire O; 
 
is an alternative way of creating wire declarations. Note that ports default to being wires, so the 
definition of wire F in the Verilog code is optional. 

Continuous Assignments 

assign AB = A & B; 
assign CD = C & D; 
assign O = AB | CD; 
assign F = ~O; 
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In this module body, there are four continuous assignment statements. These statements are 
independent and executed concurrently. They are not necessarily executed in the order in which 
they are written. This does not affect the functionality of the design. Suppose assign AB = A & 
B; changes value. This causes B to be evaluated. If AB changes as a result then assign O = AB | 
CD; is evaluated. If O changes value then assign F = ~O; will be evaluated; possibly the output 
of the module will change due to a change on B. 

Wire Assignments 

A wire can be declared and continuously assigned in a single statement - a wire assignment. 
This is a shortcut which saves declaring and assigning a wire separately. There are no 
advantages or disadvantages between the two methods other than the obvious difference that 
wire assignments reduce the size of the text. Later on we will discuss delays on assignments and 
wires. A delay in a wire assignment is equivalent to a delay in the corresponding continuous 
assignment, not a delay on the wire. Thus it could be necessary to separate the wire declaration 
from the continuous assignment to put the delay onto the wire rather than the assignment. Note 
that this is a subtle point that you are unlikely to encounter in practice! 

 

Figure 3: Using wire assignments to describe an AOI gate module 

// Verilog code for AND-OR-INVERT gate 
module AOI (input A, B, C, D, output F); 
  /*  start of a block comment 
  wire F; 
  wire AB, CD, O; 
  assign AB = A & B; 
  assign CD = C & D; 
  assign O = AB | CD; 
  assign F = ~O; 
  end of a block comment */ 
 
  // Equivalent... 
  wire AB = A & B; 
  wire CD = C & D; 
  wire O = AB | CD; 
  wire F = ~O; 
endmodule 
// end of Verilog code 
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So in this sample code, each of the wire declarations and its corresponding assign statement are 
effectively merged into one wire assignment. 

Note the use of a block comment in the Verilog code, rather than the line comments we have 
seen so far. A block comment may span several lines of code. Block comments may not be 
nested. 

A Design Hierarchy 

Modules can reference other modules to form a hierarchy. Here we see a 2:1 multiplexer with 
an inverting data path consisting of an AOI gate and a pair of inverters. 

Module Instances 

The MUX_2 module contains references to each of the lower level modules, and describes the 
interconnections between them. In Verilog jargon, a reference to a lower level module is called 
a module instance. 

 

Figure 4: MUX 2 implementation using AOI gate 

Each instance is an independent, concurrently active copy of a module. Each module instance 
consists of the name of the module being instanced (e.g. AOI or INV), an instance name 
(unique to that instance within the current module) and a port connection list. 

The module port connections can be given in order (positional mapping), or the ports can be 
explicitly named as they are connected (named mapping). Named mapping is usually preferred 
for long connection lists as it makes errors less likely. 

Verilog: 2-input multiplexer module 

// Verilog code for 2-input multiplexer 
module INV (input A, output F);   // An inverter 
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  assign F = ~A; 
endmodule 
 
module AOI (input A, B, C, D, output F); 
  assign F = ~((A & B) | (C & D)); 
endmodule 
 
module MUX2 (input SEL, A, B, output F);   // 2:1 multiplexer 
  // wires SELB and FB are implicit 
  // Module instances... 
  INV G1 (SEL, SELB); 
  AOI G2 (SELB, A, SEL, B, FB); 
  INV G3 (.A(FB), .F(F));            // Named mapping 
endmodule 
// end of Verilog code 

Yes, it's time to dissect the code line by line again, but we'll concentrate on the new lines as the 
module interface has been covered before (see A Simple Design). 

Implicit Wires 

// wires SELB and FB are implicit 

The wires used in continuous assignments MUST be declared. However, one-bit wires 
connecting component instances together do not need to be declared. Such wires are regarded as 
implicit wires. Note that implicit wires are only one bit wide, if a connection between two 
components is a bus, you must declare the bus as a wire. 

Module Instances 

AOI G2 (SELB, A, SEL, B, FB); 

In a module instance, the ports defined in the module interface are connected to wires in the 
instantiating module through the use of port mapping. For the instance of AOI, the first wire in 
the port list is SELB. In the module header for the AOI gate, A is the first port in the port list, so 
SELB is connected to A. The second port in the module header is B, the second wire in the port 
list is A, thus the wire A in MUX2 is connected to the port B of the AOI gate instance. 

INV G3 (.A(FB), .F(F)); 

The second INV instance, G3, uses named mapping rather than positional mapping. In the port 
list for the G£ instance, the wire FB is connected to the input port, A, of the INV instance. The 
period character is followed by the name of the module header port; in brackets following the 
formal port, the name of the wire is entered. 

More Examples 
 
Example 1: A 2-to-4 decoder is shown in Figure 5, with the input signals A and B and output 
signals D0, D1, D2, and D3. A VERILOG structural specification is given as: 
 

http://www.doulos.com/knowhow/verilog_designers_guide/a_simple_design/
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module decoder (A,B, D0,D1,D2,D3); 
input A,B; 
output D0,D1,D2,D3; 

 
and (D0,~A,~B); 
and (D1,~A,B); 
and (D2,A,~B); 
and (D3,A,B); 

endmodule 
 
The name of the module is “decoder”. It has 6 ports; the first two A and B are inputs. The last 
four D0, D1, D2, and D3 are outputs. The ‘~” (tilde character on the keyboard)  represents ‘not” 
function. In the “and” operator the first signal is the output, and the rest are inputs. Hence in 
Example 1, not(A) and not(B) are “and”ed and assigned to D0.   Similarly, the remaining “and” 
functions are evaluated. Finally, the module ends with an “endmodule” statement.  
 
 
 
 
 
 
 
 
The internal structure of the decoder is shown in Figure 6.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Behavioral specification 

 
A circuit can also be described using behavioral specification. This can be done by using 

logic expressions. The following operators define logic operations: ‘&’ for  AND, ‘|’ for OR, ‘^’ 
for XOR ‘^~’ for XNOR, ‘&~’ for NAND, and ‘|~’for NOR. Example 1 can now be modified 
using behavioral specification as follows.  
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Figure 6. Logic diagram of 2-to-4 
d d  

Figure 5: 2-to-4 decoder 
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module decoder (A,B, D0,D1,D2,D3); 
input A,B; 
output D0,D1,D2,D3; 

 
assign  D0 = ~A&~B; 
assign  D1 = ~A&B; 
assign  D2 = A&~B; 
assign  D3 = A&B; 

endmodule 
 

The assign keyword provides continuous assignment for the signals D0, D1, D2 and D3.  
Whenever any signal on the right hand side changes its state, the value will be reevaluated. One 
advantage of VERILOG is that a system can be represented in a hierarchical manner. This can 
be illustrated by taking a simple example of a full adder circuit. A full adder can be broken 
down into a sum generating circuit and a carry generating circuit as shown in Figure 7. The Sum 
and Carry generating circuits can again be broken down into primitive gates (XOR, AND and 
OR gates). A VERILOG code for the full adder can be written using the hierarchical structure. 
This is shown in Example 2.  

 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
Example 2: A hierarchical structure for a full adder is shown in Figure 7. Its logic 
implementation is shown in Figure 8. The VERILOG code is given below. The first module 
“fulladder” uses instantiations of the modules “sum” and “carry”. Code for “sum” module and 
“carry” module are given separately. 
 

module fulladder (A,B,CIN, S,COUT); 
input A,B,CIN; 
output S,COUT; 

sum S1 (S, A,B,CIN); 
carry C1 (COUT, A,B,CIN); 

endmodule 
 
module sum (S,A,B,CIN); 

Figure 7. Hierarchical representation of  Full Adder  
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input A,B,CIN; 
output S; 
wire t1; 

xor X1 (t1,A,B); 
xor X2 (S,CIN,t1); 

endmodule 
 
module carry (COUT,A,B,CIN); 

input A,B,CIN; 
output COUT; 
wire a1,a2,a3; 

and A1 (a1,A,B); 
and A2 (a2,B,CIN); 
and A3 (a3.A, CIN); 
or  O1 (COUT,a1,a2,a3); 

endmodule 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The hierarchical approach can be used to partition a complex system into smaller ones. 
The VERILOG code for a full adder can be written very simply as:  
 
module fulladder (A,B,CIN, S,COUT); 
input A,B,CIN; 
output S,COUT; 

assign S = A ^ B ^ CIN; 
assign COUT = (A & B) |(A & CIN) | (B & CIN); 

endmodule 
 

Let us now build a 4-bit ripple carry adder using the full adder described above as a module 
(sub circuit). The 4-bit ripple carry adder is shown in Figure 9. This is implemented by 

S 
B 
A 

COUT 

CIN 

Figure 8. Logic diagram of  full adder 
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cascading four single bit full adder blocks. Example 3 gives the  VERILOG code for the 4-bit 
ripple carry adder. In the VERILOG code, the module name used is “four_bit_adder”. The four 
bit adder is described using the four instantiation statements. Each one begins with the name of 
the module being instantiated (in this case the “fulladder”), followed by a name for the module. 
The names must be unique. Then the signal names are listed in the same order as in the 
“fulladder” module declaration statement. Three internal signals C1, C2, and C3 are used in the 
example. They represent the connecting wires between the full adder modules and are declared 
by the “wire” statement declaration.  
 
Example 3: 

 
module four_bit_adder (CIN, X3,X2,X1,X0, Y3,Y2,Y1,Y0 , S3,S2,S1,S0, COUT ); 

input   CIN, X3, X2, X1, X0, Y3, Y2, Y1, Y0; 
output   S3, S2, S1, S0, COUT; 
wire  C1, C2, C3; 

 
fulladder FA0 (X0, Y0, CIN, S0, C1); 
fulladder FA1 (X1, Y1, C1, S1, C2); 
fulladder FA2 (X2, Y2, C2, S2, C3); 
fulladder FA3 (X3, Y3, C3, S3, COUT); 

endmodule 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A full adder can also be implemented using two half adders. Example 4 gives the VERILOG 
code for a full adder implemented using half adders. 

 
Example 4: VERILOG code for full adder using half adders 

 
module half_adder (x,y, s,c); 

input x, y; 
output s,c; 

assign s = x ^ y; 
assign c = x & y; 

endmodule 
 

FA0 FA1 FA2 FA3 

Y0 Y1 Y2 Y3 X0 X1 X2 X3 

S0 
S1 S2 S3 

C1 C2 C3 CIN COUT 

Figure 9. Four bit Full Adder 
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module full_adder  (x, y, z, s, c); 
input x,y,z; 
output s,c: 
wire  hs, hc, tc; 

half _adder HA0 (x, y, hs, hc); 
half _adder HA1 (hs, z, s, tc); 
assign c = tc | hc; 

endmodule 
 

The VERILOG code for the 4-bit ripple-carry-adder can be written using vector notation. 
Example 5 illustrates this. The full adder  in Example 4  is used in Example 5. The statement 
“input [3:0] A, B” means that A and B are 4-bit inputs with their MSB’s A(3) and B(3) and 
LSB’s A(0) and B(0) respectively. We can change the order of MSB and LSB by specifying 
“input [0:3] A, B”, in which case A(0) and B(0) become MSB bits. 

 
Example 5:  
 

module adder_4 (B, A,CIN,S ,COUT); 
input [3:0] A,B; 
input CIN; 
output [3:0] S; 
output COUT; 
wire  [4:0] C;  

full _adder  FA0 (B(0), A(0), C(0), S(0), C(1)); 
full _adder  FA1 (B(1), A(1), C(1), S(1), C(2)); 
full _adder  FA2 (B(2), A(2), C(2), S(2), C(3)); 
full _adder  FA3 (B(3), A(3), C(3), S(3), C(4)); 
assign C(0) = CIN; 
assign COUT = C(4); 

endmodule 
 

Conditional Statement 
 
Conditional_expression ? true_expression : false expression; 
 
Example 6: 
 
Assign A = (B<C) ? (D+5) : (D+2); 
 
means that if B is less than C, the value of A will be D + 5, or else A will have the value D + 2.   
 
Procedural Statement 

 
An if-else statement is a procedural statement. A 2 to 1  
multiplexer described using an if-else statement is  
given in Example 6. This MUX is shown in Figure 10. It 
can be described in words as: F = W1 if S = 1 and F = W0 

Figure 10: 2-to-1 MUX 

W0 

W1 

S 

F 

0 

1 



Fall 2016 
 

 
 

if S =0. In VERILOG this behavior can be described as: 
 
if (S==1) F = W1; 
else F = W0; 

 
Example 6: MUX 2-to-1 

 
//Behavioral specification 
module mux2to1  (w0, w1, s, F); 

input wo,w1,s; 
output F; 
reg F; 

 
always @ (w0,w1,s) 
if (s==1) F = w1; 
else F = w0; 
endmodule 

 
VERILOG syntax requires that procedural statements be contained inside a construct called 

an “always” block. An “always” block can contain a single statement or a number of  
statements. A typical VERILOG module may include several “always” blocks. The statements 
in an “always” block are evaluated in the order given in the code. This is in contrast to the 
continuous assignment statements, which are evaluated concurrently and hence have no 
meaningful order. The part of the always block after the @ symbol, in parentheses, is called the 
sensitivity list. The statements inside an always block are executed by the simulator only when 
one or more of the signals in the sensitivity list change in value.  
If a signal is assigned a value using procedural statements, then VERILOG syntax requires that 
it be declared as a variable, this is accomplished by using the keyword “reg”. This means that 
once the variable value is assigned, the simulator “registers” this value and it will not change 
until the “always” block is executed again.  

 
Numbers in Verilog 

 
Constants can be specified in decimal, octal, hexadecimal or binary format. Negative 

numbers are represented in 2’s complement format. The syntax is: <size>’<radix><value> 
The character “ ’ ” after <size> is read as “tick”. The default size value is 32 bits. 
 
Examples:  
 
8’hA7represents an 8 bit hexadecimal number 10100111. 
7’b100101 represents a 7 bit number 0100101. When the size is larger than the value (as in this 
example), the leftmost bits are filled based on the value of the given number. When the leftmost 
bit is 0 or 1, then a 0 is used. Z are filled with Z and X with X.  
2 is represented by the default 32 bit number “00000000000000000000000000000010” 

 
Example 7: Mux 4-to-1 
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module mux4to1 (w0, w1,w2, w3, S, F); 
input w0,w1,w2,w3,[1:0] S; 
output F; 
reg  F; 

always @ (w0,w1,w2,w3,S) 
if (S==0) F = w0; 
else if (S==1) F = w1; 
else if (S==2) F = w2; 
else F = w3; 
endmodule 

 

Test Benches 

Test benches help you to verify that a design is correct. How do you create a simple testbench in 
Verilog? 

 

Figure 11: Test Bench Application 

Let's take the existing MUX_2 example module (Figure 4) and create a testbench for it. We can 
create a template for the testbench code simply by referring to the diagram above. 

module MUX2TEST;  // No ports! 
  ... 
  initial 
  // Stimulus 
  ... 
 
  MUX2 M (SEL, A, B, F); 
 
  initial 
  // Analysis 
  ... 
 
endmodule 
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Initial Statement 

In this code fragment, the stimulus and response capture are going to be coded using a pair of 
initial blocks. An initial block can contain sequential statements that can be used to describe the 
behavior of signals in a test bench. 

In the Stimulus initial block, we need to generate waveform on the A, B and SEL inputs. Thus: 

initial  // Stimulus 
begin 
  SEL = 0; A = 0; B = 0; 
  #10 A = 1; 
  #10 SEL = 1; 
  #10 B = 1; 
end 

Once again, let's look at each line in turn. 

SEL = 0; A = 0; B = 0; 

This line contains three sequential statements. First of all, SEL is set to 0, then A, then B. All 
three are set to 0 at simulation time 0. 

#10 A = 1; 

In terms of simulation, the simulator now advances by 10 time units and then assigns 1 to A. 
Note that we are at simulation time = 10 time units, not 10 ns or 10 ps! Unless we direct the 
Verilog simulator otherwise, a Verilog simulation works in dimensionless time units. 

#10 SEL = 1; 
#10 B = 1; 

These two lines are similar to the one above. 10 time units after A is set to 1, SEL is set to 1. 
Another 10 time units later (so we are now at simulation time = 30 time units), B is set to 1. The 
diagram below shows how the initial block has created a waveform sequence for the three 
signals. 

 
Figure 12: Timing giagrams 
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We shall look at the use of the initial block to capture the MUX_2's response in the next section 
of the tutorial. 

Response Capture 

In the previous section of the tutorial, we looked at describing stimuli in Verilog to test our 2-
input multiplexer. So next, we’ll look at how to capture the response of our device under test. 

 

Figure 13: Test Response Capture 

Remember from the module template that we are using initial blocks to code up the Stimulus 
and Response blocks. 

module MUX2TEST;  // No ports! 
  ... 
  initial 
  // Stimulus 
  ... 
 
  MUX2 M (SEL, A, B, F); 
 
  initial 
  // Analysis 
  ... 
 
endmodule 

The Response initial block can be described very easily in Verilog as we can benefit from a 
built-in Verilog system task. Thus: 

initial  // Response 
  $monitor($time, , SEL, A, B, F); 

Once again, let's look at each item in turn. 

$monitor(); 

$monitor is a system task that is part of the Verilog language. Its mission in life is to print 
values to the screen. The values it prints are those corresponding to the arguments that you pass 
to the task when it is executed. The $monitor task is executed whenever any one of its 
arguments changes, with one or two notable exceptions. 



Fall 2016 
 

 
 

$time 

$time is a system function (as opposed to a system task). It returns the current simulation time. 
In the above example, $time is an argument to $monitor. However, $time changing does not 
cause $monitor to execute - $monitor is clever enough to know that you wouldn't really want to 
print to the screen the values of all of the arguments every time the simulation time changed. 

, , , 

The space at position 2 in the argument list ensures that a space is printed to the screen after the 
value of $time each time $monitor is executed. This is a simple method of formatting the screen 
output. 

SEL, A, B, F 

Finally, we come to the signal arguments themselves. Each time one of these signals changes 
value, $monitor will execute. When $monitor executes it will print all of the argument values to 
the screen, including $time. This is the output created by $monitor in our MUX2 testbench: 

 0 0000 
10 0101 
20 1100 
30 1111 

This is simply a tabular listing of the waveforms that would be generated during simulation (if 
we had a waveform viewer, that is!). 
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RTL Verilog 

Remember this? 

 
 

Now we are going to look at the principles of RTL coding for synthesis tools. 
 
Most commercially available synthesis tools expect to be given a design description in RTL 
form. RTL is an acronym for register transfer level. This implies that your Verilog code 
describes how data is transformed as it is passed from register to register. The transforming of 
the data is performed by the combinational logic that exists between the registers. Don't worry! 
RTL code also applies to pure combinational logic - you don't have to use registers. To show 
you what we mean by RTL code, let's consider a simple example. 
 

module AOI (input A, B, C, D, output F); 

  assign F = ~((A & B) | (C & D)); 

endmodule 

 
Yes! The AOI gate that we have used as an example so far has actually been written in RTL 
form. This means that continuous assignments are a valid way of describing designs for input to 
RTL synthesis tools. What other code techniques can we use? How about: 

module MUX2 (input SEL, A, B, output F); 

  input SEL, A, B; 

  output F; 

  INV G1 (SEL, SELB); 

  AOI G2 (SELB, A, SEL, B, FB); 

  INV G3 (.A(FB), .F(F)); 
endmodule 
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Module instances are also examples of synthesizable RTL statements. However, one of the 
reasons to use synthesis technology is to be able to describe the design at a higher level of 
abstraction than using a collection of module instances or low-level binary operators in a 
continuous assignment. We would like to be able to describe what the design does and leave the 
consideration of how the design is implemented up to the synthesis tool. This is a first step (and 
a pretty big conceptual one) on the road to high-level design. We are going to use a feature of 
the Verilog language that allows us to specify the functionality of a design (the ‘what') that can 
be interpreted by a synthesis tool. 
 
Always blocks 
 
Always blocks are akin to the initial blocks that you have met already in Test Benches. Initial 
blocks are procedural blocks that contain sequential statements. Initial blocks execute just once. 
Always blocks on the other hand are always available for execution. This means that the 
statements inside an always block are executed up until the closing end keyword: 
 

always 

begin 

  // statements 

end 

 
But then they can be executed again! This means that a way of controlling execution through an 
always block is required. In describing synthesizable designs, a sensitivity list is often used to 
control execution (we shall see other approaches later). 
 

always @(sensitivity-list) 

begin 

  // statements 

end 

The sensitivity list consists of one or more signals. When at least one of these signals changes, 
the always block executes through to the end keyword as before. Except that now, the 
sensitivity list prevents the always block from executing again until another change occurs on a 
signal in the sensitivity list. 
 
The statements inside the always block describe the functionality of the design (or a part of it). 
Let's reconsider the AOI gate: 
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always @(sensitivity-list) 

begin 

  F = ~((a & b) | (c & d)); 

end 

 
Instead of a continuous assignment, we now have a procedural assignment to describe the 
functionality of the AOI gate. Notice that the sensitivity list isn't valid Verilog code. We need to 
create a meaningful sensitivity list. How do we decide when to execute the always block? 
Perhaps a better question is what do we need to do in order to have F change value. 
Answer: F can only change when at least one of a, b, c or d changes. After all, these are the four 
inputs to the AOI gate. That's our sensitivity list: 
 

always @(a or b or c or d) 

begin 

  F = ~((a & b) | (c & d)); 

end 

Verilog-2001 introduced additional syntax for describing sensitivity lists. 
 

always @(a, b, c, d) 

always @(*) 

always @* 

 
In the first of these, we have simply replaced the word or with a comma. The other two are 
equivalent and create an implicit sensitivity list that contains all the signals whose values are 
read in the statements of the always block. In this example @* or @(*) are equivalent to 
@(a,b,c,d). When describing combinational logic, it is important to make sure that sensitivity 
lists are complete; this syntax helps to ensure that this is holds. 
 
Now for the MUX_2 design. In the above code snippet, we simply replaced the continuous 
assignment with an equivalent always block. We can do the same with the module instances in 
the MUX_2 design - strip away each instance and replace it with the equivalent always block. 
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always @(sel) 

begin 

  selb = ~sel; 

end 

 

always @(a or sel or b or selb) 

begin 

  fb = ~((a & sel) | (b & selb)); 

end 

 

always @(fb) 

begin 

  f = ~fb; 

end 

 
But, we can do better than this. Let's merge the three always blocks together remembering that 
in the process (a pun for the VHDL'ers amongst you!) the sensitivity list of the resulting one 
always block contains only those signals that cause F to change value. 
 

always @(sel or a or b) 

begin 

  selb = ~sel; 

  fb = ~((a & sel) | (b & selb)); 

  f = ~fb; 

end 

When writing RTL code, “think functionality, think inputs” is a useful aide memoire in terms of 
bridging the gap between concept and code. Well, we have already taken care of the inputs as 
the sensitivity list now consists of only the MUX_2 input ports. 
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For the functionality, let’s get conceptual. If sel is a logic 1, a is routed through to the f output. 
On the other hand, if sel is a logic 0, b is routed through to the f output. Rather than think about 
routing one of the inputs through to the output let's think about the output getting one of the 
inputs, and let's write the text on separate lines depending upon whether we are making a 
decision or performing an action (sometimes referred to as pseudo-code): 
 

if sel is logic 1 

  f gets a 

otherwise 

  f gets b 

This can be translated into Verilog code: 
 

if (sel == 1) 

  f = a; 

else 

  f = b; 

Now before we go any further, we'll just take this code snippet a line at a time. 
 

if (sel == 1) 

 
The Verilog language allows for many different kinds of sequential statement. The procedural 
assignment is one you have already come across not only on this page but also in test benches 
(assignments to SEL, A and B in the stimulus initial block, if you remember). Here's another: 
the if statement. Actually this line is part of the if-else statement that is the entire code snippet. 
if is a Verilog keyword. After the if keyword you have a conditional expression, in this case (sel 
== 1) - does sel have the value logic 1? If so... 
 

f = a; 

f gets the value on the a input. Or in Verilog jargon, a procedural assignment. But what if sel is 
not logic 1? 
 

else 

Otherwise (assume sel is logic 0 - more on this assumption later) ... 
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f = b; 

f gets the value on the b input. 
 
So, as it turns out, we have described the funcionality of the MUX_2 design using a single 
procedural statement, the if-else statement. In each branch of this if-else statement, there is an 
additional procedural statement, either assigning a to f, or b to f, depending upon the value of 
sel. But we have to remember that this procedural statement lives inside an always block, so... 
 

always @(sel or a or b) 

begin 

  if (sel == 1) 

    f = a; 

  else 

    f = b; 

end 

 
This now enables us to describe a design using a list of continuous assignments, a hierarchy of 
designs or an always block. Compare the 3 approaches for yourself: 
 

// continuous assignments 

assign selb = ~sel; 

assign fb = ~((a & sel) | (b & selb)); 

assign f = ~fb 

// a hierarchy of designs 

INV G1 (SEL, SELB); 

AOI G2 (SELB, A, SEL, B, FB); 

INV G3 (.A(FB), .F(F)); 

// always block 

always @(sel or a or b) 

begin 
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  if (sel == 1) 

    f = a; 

  else 

    f = b; 

end 

 
And of course you can mix'n'match coding styles if you wish. On a simple design, such as a 
MUX_2 it is perhaps not apparent how succinct the use of always blocks is in general compared 
to module instances and continuous assignments. But you can readily appreciate that the use of 
just one always block in this design is enabling us to describe the design in terms of its 
functionality without regard to the implementation. You can describe what you want without 
having to worry about how you are going to implement the design (because you don't have to - 
that's the synthesis tool's job!). 
 
Go on! Read the MUX_2 design into your synthesis tool and have a play. 
 
If statement 
 
In the last section, we looked at describing hardware conceptually using always blocks. What 
kind of hardware can we describe? What are the limitations? What kinds of Verilog statement 
can be used in always blocks to describe hardware? Well, we have already seen the use of an if 
statement to describe a multiplexer, so let's dwell on if statements in this section. 
 

always @(sensitivity-list) // invalid Verilog code! 

begin 

// statements 

end 

The code snippet above outlines a way to describe combinational logic using always blocks. To 
model a multiplexer, an if statement was used to describe the functionality. In addition, all of 
the inputs to the multiplexer were specified in the sensitivity list. 
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reg f; 

always @(sel or a or b) 

begin 

  if (sel == 1) 

    f = a; 

  else 

    f = b; 

end 

Variable declaration 
 
It is a fundamental rule of the Verilog HDL that any object that is assigned a value in an always 
statement must be declared as a variable. Hence, 
 

reg f; // must be declared before it is used in a statement 

The term variable was introduced in the verilog-2001 standard. Previously, the term used 
was register. This was confusing, because a Verilog variable (register) does not necessarily 
imply that a hardware register would be synthesized. hence the change of terminology. 
 
Combinational logic 
 
It transpires that in order to create Verilog code that can be input to a synthesis tool for the 
synthesis of combinational logic, the requirement for all inputs to the hardware to appear in the 
sensitivity list is a golden rule. 
 
Golden Rule 1: 
To synthesize combinational logic using an always block, all inputs to the design must appear in 
the sensitivity list. 

 
Altogether there are 3 golden rules for synthesizing combinational logic, we will address each 
of these golden rules over the next couple of sections in this tutorial. 
 
If statement 
The if statement in Verilog is a sequential statement that conditionally executes other sequential 
statements, depending upon the value of some condition. An if statement may optionally 
contain an else part, executed if the condition is false. Although the else part is optional, for the 
time being, we will code up if statements with a corresponding else rather than simple if 



Fall 2016 
 

 
 

statements. In order to have more than one sequential statement executed in an if statement, 
multiple statements are bracketed together using the begin..end keywords, 
 

reg f, g; // a new reg variable, g 

always @(sel or a or b) 

begin 

  if (sel == 1) 

    begin 

      f = a; 

     g = ~a; 

    end 

  else 

    begin 

      f = b; 

      g = a & b; 

    end 

end 

If statements can be nested if you have more complex behavior to describe: 
 

reg f, g; 

always @(sel or sel_2 or a or b) 

  if (sel == 1) 

    begin 

      f = a; 

      if (sel_2 == 1) 

        g = ~a; 

      else 

        g = ~b; 
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    end 

  else 

    begin 

      f = b; 

      if (sel_2 == 1) 

        g = a & b; 

      else 

        g = a | b; 

    end 

 
Notice that the code is beginning to look a little bit confusing! In the code above, begin..end 
blocks have only been used where they must be used, that is, where we have multiple 
statements. It is probably a good idea to use begin..end blocks throughout your Verilog code - 
you end up typing in a bit more Verilog but it's easier to read. Also, if you have to add more 
functionality to an always block later on (more sequential statement), at least the begin..end 
block is already in place. So, 
 

reg f, g, h; // yes, an extra reg variable, h 

always @(sel or sel_2 or a or b) 

begin 

  if (sel == 1) 

    begin 

      f = a; 

      if (sel_2 == 1) 

        begin 

          h = ~b; 

          g = ~a; 

        end 

      else 
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        begin 

          g = a | b; 

          h = a & b; 

        end 

    end 

  else 

    begin 

      if (sel_2 == 1) 

        begin 

          g = a & b; 

          h = ~(a & b); 

        end 

      else 

        begin 

          h = ~(a | b); 

          g = a | b; 

        end 

      f = b;  // here's f! 

    end 

end 

Note that the order of assignments to f, g and h has been played around with (just to keep you 
on your toes!). 
 
 
 
 
Synthesis considerations 
 
If statements are synthesized by generating a multiplexer for each variable assigned within the if 
statement. The select input on each mux is driven by logic determined by the if condition, and 
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the data inputs are determined by the expressions on the right hand sides of the assignments. 
During subsequent optimization by a synthesis tool, the multiplexer architecture may be 
changed to a structure using and-or-invert gates as surrounding functionality such as the a & 
b and the ~a can be merged into complex and-or-invert gates to yield a more compact hardware 
implementation. 
 
Synthesizing Latches 
 
In the last section, if statements were used to describe simple combinational logic circuits. 
Synthesizing the Verilog code produced multiplexing circuits, although the exact 
implementation depends upon the synthesis tool used and the target architecture of the device. 
 
As well as enabling the creation of multiplexers, if statements can also be used to implement 
tristate buffers and transparent latches. In this article we will look at how transparent latches are 
synthesized from if statements and how to avoid the inadvertent creation of latches when you 
meant to create combinational logic circuits from Verilog code containing if statements. 
 
If Statements 
 
In the processes that have been coded up so far, if-else statements rather than simple if 
statements have been used. Let's use a simple if statement rather than an if-else statement in an 
example you have already seen: 
 

reg f; 

always @ (sel or a or b) 

  begin : if_else 

    if (sel == 1) 

      f = a; 

    else 

      f = b; 

  end 

becomes... 
 
 
 

reg f; 

always @ (sel or a or b) 
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  begin : pure_if 

    f = b; 

    if (sel == 1) 

      f = a; 

  end 

 
Note that the behavior being described is the same. In the pure_if always block, f initially 
gets b. Only if sel is active HIGH does f get a. This is perhaps a slightly odd way to describe a 
multiplexing circuit but it is accepted by all synthesis tools. Synthesis tools expect to create 
circuits responding to binary values. As far as a synthesis tool is concerned if sel is 1 a is routed 
through to f. If sel is not 1 it must be 0 and thus sel being 0 leaves f being driven by the initial 
assignment from b. 
 
Let's lose the b input to the always block so that we have: 
 

reg f; 

always @ (sel, a) 

  begin : latching_if 

    if (sel == 1) 

      f = a; 

  end 

Incomplete Assignment 
 
Now analyze the behavior of the code. If sel is 1, f gets a. But what happens when sel is 0? 
Well, very simply, nothing! f does not and cannot change. When sel is fixed at 0, we can 
change a as much as we like, f will not be assigned the value of a. If we suppose that an if 
statement synthesizes to a multiplexer, then we must be able to configure the multiplexer such 
that f only gets the value of a when sel is 1. This can be achieved by feeding back the 
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multiplexer f output back to the 0 input; in hardware terms this is a transparent latch and this is 
exactly the hardware synthesized by a synthesis tool given this Verilog code. 

 
If the target architecture does not contain transparent latches the synthesis tool will generate 
multiplexer circuits that employ combinational feedback in order to mimic the latching 
behaviour required. 
 
Now, this is very well but what's really happening here? One minute if statements create 
multiplexers, the next they create latches. Well, it's not the if statements, but the process as a 
whole that counts. If it is possible to execute an always block without assigning a value to a 
signal in that always block, the reg variable will be implemented as a transparent latch. This is 
known as incomplete assignment. 
 
Golden Rule 2: 
To synthesize combinational logic using an always block, all variables must be assigned under 
all conditions. 

 
Simplifying code analysis 
 
 
Suppose you are creating an always block to describe combinational logic. This always block 
consists of nested if-else statements as follows: 

reg f, g; 

always @ (sel or sel_2 or sel_3 or a or b) 

  begin 

    if (sel == 1) 

      begin 

        f = a; 

        if (sel_2 == 1) 

          g = ~ a; 

        else 
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          begin 

            g = ~ b; 

            if (sel_3 == 1) 

              g = a ^ b; 

          end 

      end 

    else 

      begin 

        if (sel_2 == 1) 

          g = a & b; 

        else 

          if (sel_3 == 1) 

            g = ~(a & b); 

          // oops! no else 

          // else 

          //   g = ... 

          f = b; 

      end 

  end 

Will you get transparent latches on the f and g outputs? Not easy is it? If you look carefully you 
will see that in fact, g is latched when sel is 0, sel_2 is 0 and sel_3 is 0. The ‘oops!' comment 
should help you to see where the complete assignment is NOT made. 
 
Default Assignment 
 
Fortunately, it is possible to save yourself the bother of scouring through the always block code 
to locate possible incomplete assignments by setting variables to default values at the start of 
the always block. Using this approach, you may get undesired functionality if you have missed 
out an assignment (which should be easy to fix) as opposed to unwanted transparent latches. For 
our current example, 
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always @ (sel or sel_2 or sel_3 or a or b) 
  begin 

    // default values assigned to f, g 

    f = b; 

    g = a & b; 

    if (sel == 1) 

      begin 

        f = a; 

        if (sel_2 == 1) 

          g = ~ a; 

       else 

         begin 

           g = ~ b; 

           if (sel_3 == 1) 

             g = a ^ b; 

         end 

      end 

    else 

      if (sel_2 == 1) 

        g = a & b; 

      else 

        if (sel_3 == 1) 

          g = ~(a & b); 

  end 

 
 



Fall 2016 
 

 
 

Reference: 
 

1. http://www.doulos.com/knowhow/verilog_designers_guide/ 
 

http://www.doulos.com/knowhow/verilog_designers_guide/

	A Simple Design
	Figure 1: An AOI gate module
	Comments
	Module and Port declarations
	endmodule
	Functionality
	Verilog 1995

	Wires
	Wire Declarations
	Continuous Assignments

	Wire Assignments
	Figure 3: Using wire assignments to describe an AOI gate module

	A Design Hierarchy
	Module Instances
	Verilog: 2-input multiplexer module
	Implicit Wires
	Module Instances

	Test Benches
	Initial Statement

	Response Capture
	RTL Verilog
	Always blocks

	If statement
	Variable declaration
	Combinational logic
	If statement
	Synthesis considerations

	Synthesizing Latches
	If Statements
	Incomplete Assignment
	Simplifying code analysis
	Default Assignment


