Problem 1
Design a 1 out of 8 decoder, using 1 -out-of 2 decoder with one active low enable line.
Problem 2
Implement the following Boolean expression using a decoder and an OR gate - You may choose a decoder with active high or active low outputs.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,1,2,4,5)$

Problem 3
Implement the following Boolean expression using a decoder and an OR gate - You may choose a decoder with active high or active low outputs.
$f(w, x, y, z)=\Pi M(0,1,3,5,13)$

Problem 4
Implement the following Boolean expression using a decoder and a NAND gate - You may choose a decoder with active high or active low outputs.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(4,6,7,8,12,15)$
Problem 5
Implement the following Boolean expression using a decoder and a NAND gate - You may choose a decoder with active high or active low outputs.
$\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W})=\Pi \mathrm{M}(0,6,8,13,14)+\mathrm{d}(2,4,10)$

