EGC220

Problem 1

There is an integrated circuit called a BCD-seven segment decode that takes 4 inputs and has seven output. The inputs represent a number between 0 and 9, and each of the seven outputs corresponds to one of seven LED's in a seven-segment display. A typical seven segment display is shown below.

The other digits are formed as described in this table.

	Inputs				Output
Digit	D	C	В	А	(7 Segments)
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	3
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	- 8
7	0	1	1	1	
8	1	0	0	0	8
9	1	0	0	1	

- a. Write the truth table for each segment "a, b, c, d, e, f, g" with inputs A, B, C, and D. Make sure to adhere to the indicated segment notations.
- b. Simplify each output in Minimum S.O.P.
- c. Implement each output using all NAND gates.

Problem 2

Design a 1 out of 4 decoder with active low outputs and two enable lines, one active low and one active high.

Problem 3 Using the decoder in Problem 2, design a 1 out of 16 decoder with active low outputs.

Problem 4 Write a Verilog code for the decoder in Problem 2.