
EGC220

Digital Logic Fundamentals

Design Using Verilog

Baback Izadi

Division of Engineering Programs

bai@engr.newpaltz.edu



SUNY – New Paltz
Elect. & Comp.  Eng. 

Basic Verilog
 Lexical Convention

 Lexical convention are close to C++.

 Comment

 // to the end of the line.

 /* to */ across several lines

 Keywords are lower case letter & it is case sensitive

 VERILOG uses 4 valued logic: 0, 1, x and z

 Comments: // Verilog code for AND-OR-INVERT gate
module <module_name> (<module_terminal_list>);

<module_terminal_definitions>

…

<functionality_of_module>

…

endmodule



SUNY – New Paltz
Elect. & Comp.  Eng. 

Module portsModule name

Verilog keywords

Taste of Verilog

module Add_half ( sum, c_out, a, b );
input
output
wire

a, b;
sum, c_out;  
c_out_bar;

xor (sum, a, b);
// xor G1(sum, a, b);
nand (c_out_bar, a, b);
not (c_out, c_out_bar);

endmodule

Declaration of port  
modes

Declaration of internal  
signal

c_out

a

b sum

c_out_bar

Instantiation of primitive  
gates

G1



SUNY – New Paltz
Elect. & Comp.  Eng. 

Lexical Convention
• Numbers are specified in the 

traditional form  or below .
<size><base format><number>

• Size: contains decimal digitals 
that specify the  size of the 
constant in the number of bits.

• Base format: is the single 
character ‘ followed  by one of 
the following characters  
b(binary),d(decimal),o(octal),h(hex).

• Number: legal digital.

Example :

• 347 -- decimal number

• 4’b101 -- 4- bit 01012

• 2’o12 -- 2-bit octal number

• 5’h87f7 -- 5-digit 87F716

• 2’d83 -- 2-digit decimal

• String in double quotes

“ this is a introduction”



SUNY – New Paltz
Elect. & Comp.  Eng. 

Three Modeling Styles in Verilog

 Structural modeling (Gate-level)

 Use predefined or user-defined primitive gates.

 Dataflow modeling

 Use assignment statements (assign)

 Behavioral modeling

 Use procedural assignment statements (always)



SUNY – New Paltz
Elect. & Comp.  Eng. 

Structural Verilog Description of Two-Bit 
Greater-Than Circuit



SUNY – New Paltz
Elect. & Comp.  Eng. 

Dissection

 Module and Port declarations

 Verilog-2001 syntax

 module AOI (input A, B, C, D, output F);

 Verilog-1995 syntax

module AOI (A, B, C, D, F);

input A, B, C, D;

output F;

 Wires: Continuous assignment to an internal signal



SUNY – New Paltz
Elect. & Comp.  Eng. 

A Simple Dataflow Design

// Verilog code for AND-OR-INVERT gate

module AOI (input A, B, C, D, output F);

wire F;  // the default

wire AB, CD, O;  // necessary

assign AB = A & B;

assign CD = C & D;

assign O = AB | CD;

assign F = ~O;

endmodule

// end of Verilog code

Continuous Assignments



SUNY – New Paltz
Elect. & Comp.  Eng. 

A Simple Dataflow Design

// Verilog code for AND-OR-INVERT gate

module AOI (input A, B, C, D, output F);

assign F = ~((A & B) | (C & D));

endmodule

// end of Verilog code

‘&’ for  AND, ‘|’ for OR, ‘^’ for XOR ‘^~’ for XNOR, ‘&~’ for NAND



SUNY – New Paltz
Elect. & Comp.  Eng. 

Dataflow Verilog Description of Two-Bit 
Greater-Than Comparator



SUNY – New Paltz
Elect. & Comp.  Eng. 

Conditional Dataflow Verilog Description 
of Two-Bit Greater-Than Circuit



SUNY – New Paltz
Elect. & Comp.  Eng. 

Verilog Description of Two-Bit Greater-
Than Circuit



SUNY – New Paltz
Elect. & Comp.  Eng. 

A Design Hierarchy

 Module Instances

 MUX_2 module contains references to 

each of the lower level modules

// Verilog code for 2-input multiplexer

module MUX2 (input SEL, A, B, output F);  

// 2:1 multiplexer

// wires SELB and FB are implicit

// Module instances...

INV G1 (SEL, SELB);

AOI G2 (SELB, A, SEL, B, FB);

INV G3 (.A(FB), .F(F));   // Named mapping

endmodule

// end of Verilog code

// Verilog code for 2-input multiplexer

module INV (input A, output F);   // An inverter

assign F = ~A;

endmodule

module AOI (input A, B, C, D, output F);

assign F = ~((A & B) | (C & D));

endmodule

F = (SEL)’. A + (SEL).B

SELB = (SEL)’

F=(SELB).A + (SEL).B

1. Invert SEL and get SELB 

2. Use AOI and get F’

3. Invert F’ and get F



SUNY – New Paltz
Elect. & Comp.  Eng. 

Another Example

module decoder (A,B, D0,D1,D2,D3);

input A,B;

output D0,D1,D2,D3;

assign  D0 = ~A&~B;

assign  D1 = ~A&B;

assign  D2 = A&~B;

assign  D3 = A&B;

endmodule



SUNY – New Paltz
Elect. & Comp.  Eng. 

Hierarchical representation of Adder 

module fulladder (A,B,CIN, S,COUT);

input A,B,CIN;

output S,COUT;

assign S = A ^ B ^ CIN;

assign COUT = (A & B) |(A & CIN) 

| (B & CIN);

endmodule



SUNY – New Paltz
Elect. & Comp.  Eng. 

module four_bit_adder (CIN, X3,X2,X1,X0, Y3,Y2,Y1,Y0, S3,S2,S1,S0,COUT);

input  CIN, X3, X2, X1, X0, Y3, Y2, Y1, Y0;

output  S3, S2, S1, S0, COUT;

wire C1, C2, C3;

fulladder FA0 (X0, Y0, CIN, S0, C1);

fulladder FA1 (X1, Y1, C1, S1, C2);

fulladder FA2 (X2, Y2, C2, S2, C3);

fulladder FA3 (X3, Y3, C3, S3, COUT);

endmodule



SUNY – New Paltz
Elect. & Comp.  Eng. 

module adder_4 (A, B, CIN, S ,COUT);

input [3:0] A,B;

input CIN;

output [3:0] S;

output COUT;

wire  [4:0] C;

full _adder  FA0 (B(0), A(0), C(0), S(0), C(1));

full _adder  FA1 (B(1), A(1), C(1), S(1), C(2));

full _adder  FA2 (B(2), A(2), C(2), S(2), C(3));

full _adder  FA3 (B(3), A(3), C(3), S(3), C(4));

assign C(0) = CIN;

assign COUT = C(4);

endmodule



SUNY – New Paltz
Elect. & Comp.  Eng. 

Verilog Statements

Verilog has two basic types of statements

1. Concurrent statements (combinational)
(things are happening concurrently, ordering does not matter)

 Gate instantiations

 and (z, x, y), or (c, a, b), xor (S, x, y), etc.

 Continuous assignments

 assign Z = x & y; c = a | b; S = x ^ y

2. Procedural statements (sequential)
(executed in the order written in the code)

 always @ - executed continuously when the event is active

 Initial - executed only once (used in simulation)

 if then else statements



SUNY – New Paltz
Elect. & Comp.  Eng. 

Behavioral Description

module Add_half ( sum, c_out, a, b );
input  

output
a, b;

sum, c_out;

// Exclusive or

// And

reg sum, c_out;

always @ ( a or b )

begin
sum = a ^ b;  

c_out = a & b;

end  

endmodule

b

Add_half
a su

c_

m  

out

Event control  

expression or 

sensitivity listProcedure  

assignment  

statements

Must be of the  

‘reg’ type



SUNY – New Paltz
Elect. & Comp.  Eng. 

Conditional Statement

 Conditional_expression ? true_expression : false expression;

Example:

 Assign A = (B<C) ? (D+5) : (D+2);

 if B is less than C, the value of A will be D + 5, or else A will have the 

value D + 2.  

 An if-else statement is a procedural statement.

//Behavioral specification

module mux2to1 (w0, w1, s, F);

input wo,w1,s;

output F;

reg F;

always @ (w0,w1,s)

if (s==1) F = w1;

else F = w0;

endmodule

sensitivity list

always @ (w0,w1,s)

F = s ? w1: w2;

endmodule



SUNY – New Paltz
Elect. & Comp.  Eng. 

Mux 4-to-1

module mux4to1 (w0, w1,w2, w3, S, F);

input w0,w1,w2,w3,[1:0] S;

output F;

reg F;

always @ (w0,w1,w2,w3,S)

if (S==0) F = w0;

else if (S==1) F = w1;

else if (S==2) F = w2;

else F = w3;

endmodule



SUNY – New Paltz
Elect. & Comp.  Eng. 

Boolean Operators in Verilog
Verilog Operator Name Functional Group

>   >=   < <=

greater than greater 

than or equal to less 

than less than or equal 

to

relational

== !=
case equality case 

inequality
equality 

&   ^ |
bit-wise AND bit-wise 

XOR bit-wise OR
bit-wise bit-wise

&& ||
logical AND logical 

OR
logical



SUNY – New Paltz
Elect. & Comp.  Eng. 

Another Example

//Dataflow description of a 4-bit comparator.

module mag_comp (A,B,ALTB,AGTB,AEQB);

input [3:0] A,B;

output ALTB,AGTB,AEQB;

assign ALTB = (A < B),

AGTB = (A > B),

AEQB = (A == B);

endmodule



SUNY – New Paltz
Elect. & Comp.  Eng. 

Dataflow Modeling

//Dataflow description of 4-bit adder

module binary_adder (A, B, Cin, SUM, Cout);

input [3:0] A,B;

input Cin;

output [3:0] SUM;

output Cout;

assign {Cout, SUM} = A + B + Cin;

endmodule

concatenation Binary addition



SUNY – New Paltz
Elect. & Comp.  Eng. 

Design of an ALU using Case 

Statement

// 74381 ALU 

module alu(s, A, B, F); 

input [2:0] s; 

input [3:0] A, B; 

output [3:0] F; 

reg [3:0] F; 

always @(s or A or B) 

case (s) 

0: F = 4'b0000; 

1: F = B - A; 

2: F = A - B; 

3: F = A + B; 

4: F = A ^ B; 

5: F = A | B; 

6: F = A & B; 

7: F = 4'b1111; 

endcase

endmodule

S Function

0 Clear

1 B-A 

2 A-B

3 A+B

4 A XOR B

5 A OR B

6 A AND B

7 Set to all 1’s



SUNY – New Paltz
Elect. & Comp.  Eng. 

SUNY – New Paltz
Elect. & Comp.  Eng. 

2

6

// 74381 ALU 

module VALU(s, A, B, F); 

input [2:0] s; 

input [3:0] A, B; 

output [3:0] F; 

reg [3:0] F;

always @(s or A or B) 

case (s)

0: F = 4'b0000;

1: F = B - A;

2: F = A - B;

3: F = A + B; 

4: F = A ^ B; 

5: F = A | B; 

6: F = A & B; 

7: F = 4'b1111; 

endcase

endmodule



SUNY – New Paltz
Elect. & Comp.  Eng. 

1. Evaluate a | b but defer assignment of x

2. Evaluate a^b^c  but defer assignment of y

3. Evaluate b&(~c) but defer assignment of z

Blocking vs. Nonblocking Assignments

• Nonblocking assignment: all assignments deferred until all  right-hand 
sides have been evaluated (end of simulation  timestep)

• Sometimes, as above, both produce the same result.  Sometimes, not!

▪ Verilog supports two types of assignments within always
blocks, with subtly different behaviors.

▪ Blocking assignment: evaluation and assignment are immediate
always @ (a or b or c)  

begin

x = a | b; 1. Evaluate a | b, assign result to x

y = a ^ b ^ c; 2. Evaluate a^b^c, assign result to y

z = b & ~c; 3. Evaluate b&(~c), assign result to z
end

always @ (a or b or c)  

begin

x.<= a | b;

y.<= a ^ b ^ c;  

z <= b & ~c;

end 4. Assign x, y, and z with their new values



SUNY – New Paltz
Elect. & Comp.  Eng. 

Blocking vs. Nonblocking Assignments

➢ The = token represents a blocking blocking procedural assignment

✓ Evaluated and assigned in a single step 

✓ Execution flow within the procedure is blocked until the 

assignment is completed 

➢ The <= token represents a non-blocking assignment

✓ Evaluated and assigned in two steps: 

1. The right hand side is evaluated immediately 

2. The assignment to the left-hand side is postponed until other 

evaluations in the current time step are completed 

//swap bytes in word 

always @(posedge clk) 

begin 

word[15:8] <= word[ 7:0]; 

word[ 7:0] <= word[15:8]; 

end

//swap bytes in word 

always @(posedge clk) 

begin 

word[15:8] = word[ 7:0]; 

word[ 7:0] = word[15:8]; 

end



SUNY – New Paltz
Elect. & Comp.  Eng. 

Why two ways of assigning values?

Conceptual need for two kinds of assignment (in always blocks):

a  

b

a  
b

c

x  

y

Blocking:
Evaluation and assignment  
are immediate

a = b  

b = a

x = a & b  

y = x | c

Non-Blocking: a <= b
Assignment is postponed until

all r.h.s. evaluations are done b <= a

x <= a & b  

y <= x | c

When to use:
( only in always blocks! )

Sequential  
Circuits

Combinational  
Circuits



SUNY – New Paltz
Elect. & Comp.  Eng. 

Golden Rules 

 Golden Rule 1:

To synthesize combinational logic using an always block, all 

inputs to the design must appear in the sensitivity list.

 Golden Rule 2:

To synthesize combinational logic using an always block, all 

variables must be assigned under all conditions.



SUNY – New Paltz
Elect. & Comp.  Eng. 

Golden Rules 

reg f;

always @ (sel, a)

begin :

if (sel == 1)

f = a;

end

• What if sel = 0?

• Keep the current value

• Undesired functionality 

• Unintended latch

• Need to include else

reg f;

always @ (sel, a, b)

begin :

if (sel == 1)

f = a;

else

f = b;

end

• Proper as intended

Reg f;

always @ (sel, a, b)

begin f = b;

if (sel == 1)

f = a;

end

• Setting variables 

to default values 

at the start of the 

always block

• OK as well!



SUNY – New Paltz
Elect. & Comp.  Eng. 

Verilog 

Operator

Name Functional 

Group

[ ] bit-select or part-

select

( ) parenthesis

!

~

&

|

~&

~|

^

~^ or ^~

logical negation

negation

reduction AND

reduction OR

reduction NAND

reduction NOR

reduction XOR

reduction XNOR

logical

bit-wise

reduction

reduction

reduction

reduction

reduction

reduction

+

-

unary (sign) plus

unary (sign) minus

arithmetic

arithmetic

{ } concatenation concatenation

{{ }} replication replication

*

/

%

multiply

divide

modulus

arithmetic

arithmetic

arithmetic

Verilog 

Operator

Name Functional 

Group

+

-

binary plus

binary minus

arithmetic

arithmetic

<<

>>

shift left

shift right

shift

shift

>

>=

<

<=

greater than

greater than or equal 

to

less than

less than or equal to

relational

relational

relational

relational

==

!=

case equality

case inequality

equality

equality

&

^

|

bit-wise AND

bit-wise XOR

bit-wise OR

bit-wise

bit-wise

bit-wise

&&

||

logical AND

logical OR

logical

logical

?: conditional conditional



SUNY – New Paltz
Elect. & Comp.  Eng. 

Appendix



SUNY – New Paltz
Elect. & Comp.  Eng. 

Arithmetic in Verilog
module Arithmetic (A, B, Y1, Y2, Y3, Y4, Y5);

input [2:0] A, B;

output [3:0] Y1;

output [4:0] Y3;

output [2:0] Y2, Y4, Y5;

reg [3:0] Y1;

reg [4:0] Y3;

reg [2:0] Y2, Y4, Y5;

always @(A or B)

begin

Y1=A+B;//addition

Y2=A-B;//subtraction

Y3=A*B;//multiplication

Y4=A/B;//division

Y5=A%B;//modulus of A divided by B

end

endmodule



SUNY – New Paltz
Elect. & Comp.  Eng. 

Sign Arithmetic in Verilog

module Sign (A, B, Y1, Y2, Y3);

input [2:0] A, B;

output [3:0] Y1, Y2, Y3;

reg [3:0] Y1, Y2, Y3;

always @(A or B)

begin

Y1=+A/-B;

Y2=-A+-B;

Y3=A*-B;

end

endmodule



SUNY – New Paltz
Elect. & Comp.  Eng. 

Equality and inequality Operations in Verilog
module Equality (A, B, Y1, Y2, Y3);

input [2:0] A, B;

output Y1, Y2;

output [2:0] Y3;

reg Y1, Y2;

reg [2:0] Y3;

always @(A or B)

begin

Y1=A==B;//Y1=1 if A equivalent to B

Y2=A!=B;//Y2=1 if A not equivalent to B

if (A==B)//parenthesis needed

Y3=A;

else

Y3=B;

end

endmodule



SUNY – New Paltz
Elect. & Comp.  Eng. 

Logical Operations in Verilog

module Logical (A, B, C, D, E, F, Y);

input [2:0] A, B, C, D, E, F;

output Y;

reg Y;

always @(A or B or C or D or E or F)

begin

if ((A==B) && ((C>D) || !(E<F)))

Y=1;

else

Y=0;

end

endmodule



SUNY – New Paltz
Elect. & Comp.  Eng. 

Bit-wise Operations in Verilog
module Bitwise (A, B, Y);

input [6:0] A;

input [5:0] B;

output [6:0] Y;

reg [6:0] Y;

always @(A or B)

begin

Y[0]=A[0]&B[0]; //binary AND

Y[1]=A[1]|B[1]; //binary OR

Y[2]=!(A[2]&B[2]); //negated AND

Y[3]=!(A[3]|B[3]); //negated OR

Y[4]=A[4]^B[4]; //binary XOR

Y[5]=A[5]~^B[5]; //binary XNOR

Y[6]=!A[6]; //unary negation

end

endmodule



SUNY – New Paltz
Elect. & Comp.  Eng. 

. Concatenation and Replication in Verilog
 The concatenation operator "{ , }" combines (concatenates) the bits 

of two or more data objects. The objects may be scalar (single bit) or 

vectored (multiple bit). Multiple concatenations may be performed 

with a constant prefix and is known as replication.

module Concatenation (A, B, Y);

input [2:0] A, B;

output [14:0] Y;

parameter C=3'b011;

reg [14:0] Y;

always @(A or B)

begin

Y={A, B, {2{C}}, 3'b110};

end

endmodule



SUNY – New Paltz
Elect. & Comp.  Eng. 

Shift Operations in Verilog

module Shift (A, Y1, Y2);

input [7:0] A;

output [7:0] Y1, Y2;

parameter B=3; reg [7:0] Y1, Y2;

always @(A)

begin

Y1=A<<B; //logical shift left

Y2=A>>B; //logical shift right

end

endmodule



SUNY – New Paltz
Elect. & Comp.  Eng. 

Conditional Operations in Verilog

module Conditional (Time, Y);

input [2:0] Time;

output [2:0] Y;

reg [2:0] Y;

parameter Zero =3b'000;

parameter TimeOut = 3b'110;

always @(Time)

begin

Y=(Time!=TimeOut) ? Time +1 : Zero;

end

endmodule



SUNY – New Paltz
Elect. & Comp.  Eng. 

Reduction Operations in Verilog

module Reduction (A, Y1, Y2, Y3, Y4, Y5, Y6);

input [3:0] A;

output Y1, Y2, Y3, Y4, Y5, Y6;

reg Y1, Y2, Y3, Y4, Y5, Y6;

always @(A)

begin

Y1=&A; //reduction AND

Y2=|A; //reduction OR

Y3=~&A; //reduction NAND

Y4=~|A; //reduction NOR

Y5=^A; //reduction XOR

Y6=~^A; //reduction XNOR

end

endmodule



SUNY – New Paltz
Elect. & Comp.  Eng. 



SUNY – New Paltz
Elect. & Comp.  Eng. 

Testbench for the Structural Model of the 
Two-Bit Greater-Than Comparator



SUNY – New Paltz
Elect. & Comp.  Eng. 

Propagation Delay for an Inverter



SUNY – New Paltz
Elect. & Comp.  Eng. 

Circuit to demonstrate an HDL (Verilog)

Module smpl_Circuit (A, B, C, D, E)

input A, B, C;

output D, E;

wire  w1;

and # (30) G1 (w1, A, B);

not #10 G2 (E, C);

or #(20) G3 (D, w1, E);

endmodule



SUNY – New Paltz
Elect. & Comp.  Eng. 

Interaction between stimulus 
and design modules


