Xilinx VHDL
< Design Suite Version: 14.1>
Tutorial

Department of Electrical and Computer Engineering
State University of New York – New Paltz
1. Start A New Project.

Click Next.

Make Sure the Device Properties are chosen as shown below.
Click Next.
Click finish.

2. Go to **Project <- New Source**
On the New Source Wizard, click on **VHDL module** and type a filename.
Click “Next”.
Click “Finish”.

3. In this exercise, you are designing a full adder with X, Y, and Z as inputs and S and C as outputs. Hence, set the ports accordingly.
Click "Next"

Click "Finish"
4. This will open the editor where you can input your VHDL code.

Note that

\[S = X \oplus Y \oplus Z \]
\[C = XY + YZ + XZ \]

Hence,
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
-- use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity AdderVHDL is
 Port (X : in STD_LOGIC;
 Y : in STD_LOGIC;
 Z : in STD_LOGIC;
 S : out STD_LOGIC;
 C : out STD_LOGIC);
end AdderVHDL;

architecture Behavioral of AdderVHDL is
begin
 S <= X XOR Y XOR Z;
 C <= (X AND Y) OR (Y AND Z) OR (X AND Z);
end Behavioral;

5. Save the file.
The project can be simulated using ISE simulator. For ISE simulator details refer the ISE Simulator tutorial.

Make sure that for the **testbench** in the auto generated “.vhd” delete all the clock signal lines(or you can also make them as comments) and follow the same procedure as in the ISE simulator tutorial.

```vhdl
signal C : std_logic;
-- No clocks detected in port list. Replace <clock> below with appropriate port name

constant <clock>_period : time := 10 ns;

BEGIN
    -- Instantiate the Unit Under Test (UUT)
    uut: AdderVHDL PORT MAP (  
        X => X, 
        Y => Y, 
        Z => Z, 
        S => S, 
        C => C
    );

    -- Clock process definitions
    <clock>_process : process
    begin
        <clock> <= '0';
        wait for <clock>_period/2;
        <clock> <= '1';
        wait for <clock>_period/2;
    end process;

    -- Stimulus process
    stim_proc: process
    begin
        -- hold reset state for 100 ns.
        wait for 100 ns;

        wait for <clock>_period*10;

        -- insert stimulus here
        wait;
    end process;

END;
```
When the design is completed, open the User Constraints Editor and assign the pins to the correct inputs and outputs. Follow the steps in the Download Tutorial to complete the process.

```vhdl
signal testvar : std_logic_vector (2 downto 0) := "000";
-- Outputs
signal S : std_logic;
signal C : std_logic;
-- No clocks detected in port list. Replace <clock> below with
-- appropriate port name

--constant <clock>_period : time := 10 ns;
BEGIN

-- Instantiate the Unit Under Test (UUT)
uxt: AdderVHDL PORT MAP (  
    X => X,  
    Y => Y,  
    Z => Z,  
    S => S,  
    C => C  
);

-- Clock process definitions
--<clock>_process :process
--begin
--<clock> <= '0';
--wait for <clock>_period/2;
--<clock> <= '1';
--wait for <clock>_period/2;
--end process;

-- Stimulus process
stim_proc: process
begin
    -- hold reset state for 100 ns.

    --wait for <clock>_period*10;

    -- insert stimulus here

    wait;
    end process;
```

When the design is completed, open the User Constraints Editor and assign the pins to the correct inputs and outputs. Follow the steps in the Download Tutorial to complete the process.