SUNY NEW PALTZ Department of Electrical and Computer Engineering

CSE 45493 - 3 Functional Verification of Hardware Designs (3 credits) Fall 2003 Semester

COURSE SYLLABUS

1. GENERAL INFORMATION

Professors: Office:	Dr. Baback Izadi IBM: Bruce Wile, Dean Bair, Kurt Schweiger, Jim Schafer, Rebecca Gott, Steve Mittermaier, John Aylward		
Office:	203 Resnick Engineering Hall Phone: (845) 257-3823, Fax: (845) 257-3730		
	E-mail: <u>bai@engr.newpaltz.edu</u>		
	URL: http://www.engr.newpaltz.edu/~bai		
	Office hours:	Monday Wedneday	1:00 - 3:00 PM 1:00 - 3:00 PM
		and by appoint	
	Class time and place:	Monday and V 10 AM - 11:15	
		10 AM - 11.1.	
Teaching Assistant:	REH 211		
Relevant Web Pages:			
Course:	http://www.engr.newpaltz.edu/~bai/CSE45493/cse45493.html		
Verification Related	http://janick.bergeron.com/wtb		
Textbook:	Writing Testbenches: Functional Verification of HDL Models, J. Bergeron, Kluwer Academic Publishers, 2000, ISBN 0-79233- 7766-4		
References:	A Designers Guide to VHDL, Peter Ashenden,		
Prerequisite:	Digital Logic Fundamentals (CSE-45230 and CSE-45208) and basic knowledge of VHDL.		

2. COURSE OBJECTIVES

Techniques for verification of hardware designs; writing testbenches; verification of increasingly complex computer circuit designs provided by industry using simulation environments used in industry.

The Course objectives are:

- (i) Students will learn to plan and carry out an effective functional verification of a design.
- (ii) Students will learn to use verification tools and experiment on actual circuits designed in industry.
- (iii) Student will learn to work in teams to debug designs.

NOTE: At the end of the semester, students will evaluate how these course objectives have been met.

3. COURSE CONTENTS

Lecture	Date	Lecture Title	Instructor(s)	Reading
Number				Assignments
1	8/25	Introduction, Course Overview,	Izadi	Chapter 1
		Industry Perspective	Wile	
2	8/27	Verification Process/Cycle	Izadi	Chapter 3
3	9/4	Model Tech usage (User interface,	Yang	Chapter 2
		waveform viewer)		
		(Class held in UNIX Lab)		
4	9/9	Lab 1 introduction,	Wile/Izadi	Chapter 3
		Testplans/Testcases/Testbenches		
5	9/11	Driving Stimulus and simple checking	Bair	Chapter 5
		(Line Delete example)		
6	9/18	Simulation Engines	Schweiger	Chapter 2
7	9/23	Lab1 Review/Solution Discussion	Izadi/Wile	
		assignment: Escape Analysis		
8	9/25	Random methodologies vs. Deterministic	Izadi	Chapter 5
9	9/30	Introduction to "e" /Verisity Tutorial	Izadi	
10	10/2	Continued "e" discussions and introduce	Izadi	
		Lab 2		
11	10/7	Strategies for driving testcases	Schafer	Chapter 5,6
12	10/9	Strategies for checking	Bair	Chapter 5,6
13	10/16	Mid-term Exam		
14	10/21	Formal Verification introduction	Gott	
15	10/23	Lab 2 Review/Solutions/Escape Analysis	Wile	
16	10/28	Formal Verification	Izadi	
		Genbuf example (in class)		

17	10/30	Formal Verification (labre-run Lab 1 using Rulebase)	Izadi	
18	11/4	Formal Verification	Izadi	
19	11/6	Formal Verification (Quiz/Exam)	Izadi	
20	11/11	Lab 3 (Course Project) Introduction, team	Izadi	
		assignments		
21	11/13	Advanced Specman features	Izadi	
22	11/18	Coverage	Mittermaier	Chapter 2
23	11/20	Coverage Driven Feedback	Aylward	
24	11/25	Testcase Generation	Izadi	
25	12/2	Pervasive Function Verification	Izadi	
26	12/4	Case study (BHT)	Izadi	
27	12/9	How do you know when you're done?	Izadi	Chapter 7
28	12/10	(Tuesday!) Lab 3	Izadi	
		Completion/Review/Solutions/Discussion		
		Final Exam		

4. GRADING POLICY

4.1. Grade Distribution

Labs and Projects:	300 Points
Mid-term exams:	100 Points
Final Exam:	100 Points

4.2. Course Rules and General Comments:

- Any disputed grade must be resolved within 7 days of the return of the graded item. Please check with the teaching assistant first and then with the instructor if needed.
- You are responsible for all the course materials and all lecture contents unless specified otherwise by the instructor. If you miss a class, it is your responsibility to obtain assignments and other information given on that day.
- All your coursework (lab assignments, project, and exams) is expected to be your own. Evidence indicating copying of work or other cooperation will be dealt with based on university academic conduct rules. General instructions such as assisting in problem interpretation, and giving of occasional hints on problem attack (i.e., the kind of help you would get from the instructor or a teaching assistant in the course!), however, are permitted.
- Save your graded homework, tests, and project report. I may ask for them in case of any grade discrepancy.

5. RELATIONSHIP BETWEEN COURSE OBJECTIVES AND PROGRAM'S OBJECTIVES

This section is of an informative character. First, it states the common educational objectives of the Electrical and Computer Engineering Programs. Second, for the sake of clarity, it restates the course objectives of section 2, and third, it establishes the connection between program and course objectives.

5.1. Program's Educational Objectives:

I) Fundamental Knowledge: The Electrical and Computer Engineering Programs will provide students with fundamental knowledge of mathematics, Sciences and engineering, in order for them to apply this knowledge to the solution of electrical engineering problems.

II) **Design and Practical Skills:** The Electrical and Computer Engineering Programs will enable students to perform engineering design subject to engineering standards and constrains. In addition, the program will provide students with hands-on experience for implementing such designs.

III) **Social and Professional Aptitude:** The Electrical and Computer Engineering Programs will provide a broad-based education which instill in our diverse student body professional and ethical conduct, communication and teamwork skills, and the desire for life-long learning to interact effectively with the members of engineering profession as well as society at large.

5.2. Course Objectives

- (i) Students will learn to plan and carry out an effective functional verification of a design.
- (ii) Students will learn to use verification tools and experiment on actual circuits designed in industry.
- (iii) Student will learn to work in teams to debug designs.

5.3 Link between Course Objectives and Program Objectives

Course Objective	Contributes to	Program Objective
(i)	\rightarrow	1
(ii)	\rightarrow	1 & 2
(iii)	\rightarrow	2 & 3