
A brief guide to understand the Specman_calc1 

 

Before we can use Specman to simulate VHDL DUT, we need to create an interface 

file ( in this case  tb.vhdl)  to contain all DUT top level signals ( for calculator1 all  demo-top 

signals, for calculator2 all calc2_top signals). Specman drive input stimuli through this file to 

the DUT. Let’s look at the Makefile. statement:  

specman -c "load ../e/calc_top.e; write stub -qvh" creates a specman stub file called 

specman_qvh.vhd, this file works with  tb.vhdl together  to establish communication when 

simulation starts. Then all vcom compile vhdl into work directory. Statement:  

specview vsim -keepstdout tb -do sn.do   invokes both Specman and ModelSim GUI 

simultaneously an then execute the commands contained in sn.do file. 

 

DUT=../vhdl 

TB=../e 

rm -rf work specman_qvh.vhd *.elog *.err *.wlf transcript *.ecov 

 vlib work 

 vcom ${DUT}/alu_input_stage.entity.vhdl      

 vcom ${DUT}/alu_input_stage.dataflow.vhdl     

 vcom ${DUT}/alu_output_stage.entity.vhdl     

 vcom ${DUT}/alu_output_stage.dataflow.vhdl   

 vcom ${DUT}/exdbin_mac.entity.vhdl          

 vcom ${DUT}/exdbin_mac.custom.vhdl           

 vcom ${DUT}/holdreg.entity.vhdl             

 vcom ${DUT}/holdreg.dataflow.vhdl           

 vcom ${DUT}/mux_out.entity.vhdl             

 vcom ${DUT}/mux_out.dataflow.vhdl           

 vcom ${DUT}/priority.entity.vhdl            

 vcom ${DUT}/priority.dataflow.vhdl          

 vcom ${DUT}/shifter.entity.vhdl             

 vcom ${DUT}/shifter.dataflow.vhdl 



 # create specman stub file "specman_qvh.vhd" 

 specman -c "load ../e/calc_top.e; write stub -qvh" 

 vcom  specman_qvh.vhd 

 vcom ${DUT}/demo_top.entity.vhdl            

 vcom ${DUT}/demo_top.schematic.vhdl         

 vcom ${TB}/tb.vhdl 

 #specsim vsim -keepstdout demo_top    # mti gui only, sn cmd @ shell 

 specview vsim -keepstdout tb -do sn.do  # mti and sn gui  

 

E file: cmd_s.e defines the inputs body and the motheds to drive inputs to the DUT. 

All e program exacutabile statements are between  the <’ and ‘>. Anything outside are only 

comment. Internal comments must start with //.  This module defines the basic instruction 

structure, it includes only the bare essentials for the test bench to function. More under 

cmd_ext.e 

    

<'  

    // use code delimiter 

    // this is code 

    // Define the operations 

    type cmd_t: [NOP, ADD, SUB, ILG1, ILG2, SHL, SHR] (bits:4); 

    struct cmd_s {  // use "_s suffix to inidcate struct 

                // this will be useful later when you 

                // need to find it again. 

    cmd:    cmd_t;              // The command type 

    keep cmd != NOP;            // generated commands must not be NOPs 

    // Since NOPs are not acknowledged, inserting NOP in a command  

    // stream will cause an error in the driver logic. This is a way 

    // to prevent that. 

    op1:    uint (bits:32);     // Operand1 

    op2:    uint (bits:32);     // Operand2 

    // The following is to make the shift operand make sense (this  



    // is just a guess regarding the meaning of shift in this design) 

    // This is a "soft" constraint because in a specific case we may 

    // choose to set the value to a higher number (e.g. check for  

    // overflow 

    keep cmd in [SHL, SHR] => soft (op2 < 32); 

    // Below are features needed for driving and checking 

    !output:     uint (bits:32);  // will be set by the DUT 

    delay:      uint;           // sets delay between commands 

    keep soft delay in [0..100];  

    // by default delay is in the range above. it is "soft" so that 

    // one may overlay a "hard" constraint to a contradicting value 

    // (e.g. 12) 

             

    drive1(number :index) is { 

        // Drive the first cycle into DUT 

        // "number" is the Calculator port number 

        // The following two actions use the "number" field 

        // to access the proper signal for this instance 

        // of the bfm. This is known as a "computed name". 

        // See the specman on-line documentation for more details. 

        'req(number)_cmd_in'  = cmd;     // Drive first cycle 

        'req(number)_data_in' = op1;   

    }; 

 

    drive2(number:index) is { 

        // Drive the second cycle into the DUT 

        'req(number)_cmd_in'  = 0;     // Drive second cycle 

        'req(number)_data_in' = op2;         

    }; 

 

 



    verify(number :index) is { 

        // this method checks to see that the data returned is  

        // consistent with the command. A DUT error is issued  

        // otherwise       

        // First grab the data and response from the DUT 

        output = 'out_data(number)'; 

        var resp :uint (bits:2) = 'out_resp(number)'; 

         

        // Next report any response errors 

        check that resp == 1 else  

        dut_error("Channel ",number," reported error ",resp); 

         

        // Finally, if data is valid - check the result 

        // Note that the reference computation below is a speculation 

        // that clearly doesn't match the implementation ... 

        if resp == 1 then { 

            //outf("%10d %s %10d = %10d\n", op1, cmd, op2, output); 

            case cmd { 

                ADD : { 

                   if ( (op1 + op2) > 8'hffffffff ) 

                   { 

                    outf("%10d %s %10d = %10d\n", op1, cmd, op2, output); 

                    dut_error("Channel ",number," error: can not tell overflow"); 

                   } 

                   else 

                   { 

                    if( output != op1 + op2 ) 

                    { 

                      outf("%10d %s %10d = %10d\n", op1, cmd, op2, output); 

                      dut_error("Channel ",number," error during ADD"); 

                     } 



                   } 

                }; 

                SUB : { 

                     if (op2 > op1) 

                    { 

                     outf("%10d %s %10d = %10d\n", op1, cmd, op2, output); 

                     dut_error("Channel ",number," error: can not tell underflow"); 

                    } 

                    else 

                    {  

                      if( output != op1 - op2 ) 

                          {               

                       outf("%10d %s %10d = %10d\n", op1, cmd, op2, output); 

                       dut_error("Channel ",number," error during SUB"); 

                      }; 

                     }; 

                }; 

                ILG1 : { 

                    outf("%10d %s %10d = %10d\n", op1, cmd, op2, output);  

                    dut_error("Channel ",number," error: can not tell invalid command"); 

                }; 

                ILG2 : { 

                    outf("%10d %s %10d = %10d\n", op1, cmd, op2, output); 

                    dut_error("Channel ",number," error: can not tell invalid command"); 

                }; 

                SHL : { 

                    if (output != (op1 << op2 )) 

                    { 

                      outf("%10d %s %10d = %10d\n", op1, cmd, op2, output); 

                      dut_error("Channel ",number," error during SHL"); 

                    } 



                }; 

                SHR : { 

                    if(output != (op1 >> op2)) 

                    {  

                     outf("%10d %s %10d = %10d\n", op1, cmd, op2, output); 

                     dut_error("Channel ",number," error during SHR"); 

                    }; 

                }; 

                default : { // Nothing 

                }; 

            }; 

        }; 

    }; 

}; 

'> 

The marker above is end of code - this line is a comment 

            

For the calc2 we need to add one more signal: tag in the command body  and use drive1() and 

drive2() two methods to drive this signal to DUT with the command and two operands. 

Check the calculator2 specification for the input formats. The results verification is 

performed by  the method  verify().  For the calculator2 the logic and timing will become 

much more complicated. So students need to take care of  drive1(), drive2() and verify() three 

methods,  you don’t need to worry about other parts, we will make them work properly. 

 


	A brief guide to understand the Specman_calc1
	DUT=../vhdl


